« 92.幹細胞 | トップページ | 94.ノックアウトマウス »

2020年1月26日 (日)

93.ES細胞とiPS細胞

 哺乳動物はプラナリアのように分断してもまた個体が再生されるという生物ではありません。トカゲのようにしっぽを切ったらまた生やすという能力もありません。カエルも哺乳動物と同様足を切ったらまた生えてくるわけではない生物ですが、1958年にガードン( J. B. Gurdon )が、カエルの腸の細胞の核を予め除核した卵に移植すると、低い確率ですがカエルが発生することを発見していました(1)。
 すなわちカエルはプラナリアのように体を切り刻んでも個体の再生はできないけれど、少なくとも一部の体細胞には発生の全過程をサポートする能力のある遺伝子が残っているということが示されました。この実験は後に ワブル(M. R. Wabl )らによって検証され、たまたま腸に残存していた多能性幹細胞の核が採取されたのではなく、実際に分化が完了している細胞のDNAに、発生の全過程をサポートする遺伝情報のフルセットが存在することが証明されました(2)。また哺乳類でもテラトカルシノーマという癌は内部に様々な分化した細胞を内包することは昔から知られていました(3)。これらのことは組織や臓器を培養容器内で生成しようとする人々に勇気を与えました。
 1996年になって、キース・キャンベルとイアン・ウィルムット(Keith Campbell and Ian Wilmut )らは羊の乳腺細胞を通常の血清濃度の1/20で培養して多能性を復活させ、別の個体から得られた未受精卵の核を除去して、多能性復活処理した乳腺細胞と電気刺激で融合させました。さらにその細胞を胚盤胞まで体外で育て(図93-1、図93-2)、代理母の子宮に移植すると子羊が誕生しました。

931

図93-1 クローン羊ドリーの登場

 この子羊は乳腺細胞を採取した羊のクローンであり、ドリーと名付けられました(4、図93-1)。ドリーは哺乳類初のクローン個体であり、その誕生は畏怖の念をもって世界から注目されました。ノーベル文学賞のカズオ・イシグロの「わたしを離さないで」(2005年刊)でも、ヒトのクローンがとりあげられました。
 同じ方法ではありませんが、クローン動物は優秀な種牛の保存などに実用化されました。ペット(イヌ・ネコ)を復活させようという試みも成功しています。遺伝子は同じでも全く別の個体なので、こんな技術は倫理的にも問題があり無用という人もいますが、私もペットを飼育しているので、永年寄り添って生きてきたペットが死んだ後、姿形だけでも同じ個体が再生できるというのは心がさわぎます。中国などではもうクローンペットのビジネスは普及していますが、クローンといえども毛色の模様などは必ずしも同じでないというのは少しほっとさせられます。
 学術的な見地からは、絶滅危惧種の保存などには有用でしょう。哺乳類成体の組織から幹細胞を採取してドリーのようなクローンをつくる技術は、非常に成功率が低い上にヒトに応用するにはあまりにも倫理的な問題が大きすぎて、その後華々しく発展することはありませんでした。とはいえ多能性幹細胞を採取して研究しようという試みの際には、常にバックグラウンドとなっていることに間違いはありません。
 医学的な応用や分子生物学的な研究のためには、やはり多能性幹細胞を培養器の中で制御しながら分化させる技術が必要です。さて組織や臓器を培養容器内で高い効率で作成するには、その種すなわち実験材料となる細胞をどこから採ってきましょうか? 哺乳類の場合図93-2のように、受精した卵はまず不規則に卵割し桑実胚という細胞の集塊を形成します。その後細胞は2つのグループに分かれ、片方は栄養細胞層、他方は内部細胞塊を形成します。その際に卵割腔という空洞も形成されます(図93-2)。この内部細胞塊を構成する細胞はまだ多能性を保持していて、ここから図93-2に示したような様々な組織・器官が発生するわけです。実験技術上の観点や実用的な観点から言えば、その多能性幹細胞をシャーレで培養し、何らかの方法で筋肉や皮膚などの組織を誘導できれば有難いわけです。
 ドリーから少し時代をさかのぼりますが、1981年マーチン・エヴァンス のグループと彼の弟子である ゲイル・マーチン は、独立にそれぞれヒト胚の内部細胞塊から細胞を取り出して培養し、さまざまな細胞に分化させることに成功しました(5-6、図93-2、図93-3)。
 女性が生涯に生み出せる卵子は400個くらいですが、そのひとつをもらって人工受精させ、培養容器内で胚盤胞(図93-2)まで発生させます。前述したように、この胚盤胞の中にある内部細胞塊は、このあとヒトの様々な組織をつくる未分化な細胞群です。マーチン・エヴァンスはこの未分化細胞にレトロウィルスベクターを用いて遺伝子を導入し、代理母の子宮で育てさせてトランスジェニックマウスの作成に成功しました。マーチン・エヴァンスは2007年にノーベル生理学医学賞を授賞しました。

932

図93-2 哺乳類胚と内部細胞塊

933

図93-3 内部細胞塊から細胞を取り出して培養する

 エヴァンスやゲイル・マーチンが開発した多能性幹細胞培養技術を飛躍的に進化させたのはジェームス・トムソン(James A. Thomson、図93-3)でした。トムソンはまずサルの内部細胞塊からES細胞(胚性幹細胞 embryonic stem cell)の株を樹立することに成功しました(7)。細胞株というのは、長期間にわたってシャーレ内で細胞分裂を繰り返しても、分化して分裂を停止することなく、そのままの状態で継代しながら培養可能な細胞のことです。通常癌化した細胞を継代培養して樹立されますが、哺乳類の多能性幹細胞でこのような株がつくられたのははじめてのことです。トムソンはこれですぐ誰かがヒトのES細胞株をつくるだろうと予想したそうですが、意外にも誰も手を出さず、ならばと自分でとヒトES細胞株を自作しました(8-9)。トムソンの株は8ヶ月培養しても変化なく、カリオタイプも安定していて優秀な細胞株でした。
 トムソン自身は医学的利用にはあまり関心がなく、この細胞株を使ってヒトの発生過程における遺伝子発現の変化などを研究しようと考えていたようです(9)。一方でこれで様々な組織や臓器を作成して、病気の治療に利用しようとするグループは勢いづきました。クローン人間も容易に制作できそうでした。そのためこの分野の研究に危機感を抱くグループ、特に宗教関係者からは激しい拒否反応がおきました(9)。胚を実験に使うのは殺人行為で許されないという主張です。ジョージ・ブッシュ大統領はこの勢力に同調し、2001年にはES細胞研究には助成金を出さないことを決定しました(10)。この措置はオバマ大統領に代わるまで継続しました。
 もし胚の細胞ではなく、成体の幹細胞から株を作成できれば反対派の主張を回避できます。乳腺細胞からクローン羊ができたわけですから、そのような細胞株ができても不思議ではありません。ここで登場したのが黄禹錫(ファン・ウソク)です。黄禹錫事件に興味のある方は私のブログ記事(11-13)などを参照して下さい。黄禹錫の実験の概要は、成体の幹細胞(体性幹細胞)の核を除核した受精卵に移植し、電気ショックを与えるとES細胞ができるというものでした(図93-4)。彼の論文は続けざまにサイエンス誌に掲載され、世界の大注目を浴びましたが、これが捏造論文だということがわかって、韓国のみならず世界の科学界は底知れぬ衝撃を受け、かつ信用を失ってしまいました。

934

図93-4 黄禹錫の捏造(ねつぞう)論文

 黄禹錫事件の影響もあって、ヒト胚の幹細胞を使って研究や医療技術の開発を進めることは困難になってきました。そうなると幹細胞は成人の組織にひそんでいるものを探し出すか、それともすでに分化が進んだ細胞を幹細胞に若返らせるかしかありません。
 それを実現したのが奈良先端科学技術大学院大学の山中グループでした。徳澤佳美(図93-5)は初期胚や多能性幹細胞で強く発現している Fbx15 という遺伝子に注目し、この遺伝子をDNAから除外して、その場所にネオマイシン耐性遺伝子を挿入したノックインマウスを作成しました。
 このマウスは多能性幹細胞をつくることができず、胎仔期に死亡することが期待されましたが、予想に反して健康に成長し、子孫をつくることもできたのです(14)。残念な結果でしたが、このようなことはままあることで、生物はフェイルセーフ機能を持つ場合があって、ある遺伝子が損傷をうけても他の遺伝子が機能を代替することがあります。この場合は Fbx15遺伝子を喪失しても、他の遺伝子が機能を代替したわけです。重要な機能であればあるほどその可能性は高まります。とはいってもFbx15遺伝子は多能性幹細胞で発現しているので、Fbx15遺伝子の上流には多能性幹細胞が生成する物質を関知して、Fbx15に置き換えられたネオマイシン耐性遺伝子を活性化する領域が存在します。したがって、細胞に様々な候補遺伝子をレトロウィルスベクターを用いて投入し、遺伝子が多能性幹細胞の出現や維持に関係あれば、ネオマイシンを含む培地で生存できるというテストシステムとして使えます。
 その頃には多能性幹細胞に関係がありそうな候補がかなり報告されていたので、高橋和利(図93-5)は24の遺伝子を選んで、それぞれひとつづつを線維芽細胞(真皮の細胞)に導入し徳澤のテストシステムにかけてみましたが、すべての細胞はネオマイシン培地で生き残ることができませんでした。そこで高橋は24遺伝子を全部挿入したらどうなるか試してみました。24遺伝子を同時に導入すると(といっても全部が挿入されるわけではなく、ランダムにいくつかの遺伝子が導入される可能性が高い)、一部の細胞はネオマイシン培地で生き延びました。そこで高橋は24遺伝子から順次ひとつづつ遺伝子を減らした23遺伝子を挿入するという膨大な実験で、Oct3/4・Klf4・Sox2・c-Mycの遺伝子導入が多能性幹細胞形成に必須であることを示しました。つまりこの4因子のひとつを欠くと、多能性幹細胞ができないわけです。実際この4因子を導入すると、0.1%以下の低い確率とはいえ、見事に人工多能性幹細胞(iPS細胞=induced pluripotent stem cell)が生成されました(15)。2006年のことです。
 徳澤はアッセイシステムを作成したばかりでなく、マウスES細胞を用いてKlf4が多能性幹細胞の維持に必要であることを示していたので、当然参照論文(15)の共著者になるべきだったと思いますが、山中によれば自分が黄禹錫のようになった場合を恐れて除外したそうです(16-17)。このエクスキューズには、ちょっと納得できかねるものがあります。私はこの件についてはもっと裏があるような気がします。
 この論文発表(15)の翌年には、山中グループはヒトの線維芽細胞を用いて、同様な方法で ヒトiPS細胞 の作成に成功しました(18)。ローマ法王庁は受精卵を破壊しない山中の手法を絶賛するコメントを発表しました(19)。山中伸弥はJ.B.ガードンと共に2012年のノーベル生理学・医学賞を受賞しています。

935

図93-5 iPS細胞の作成

 iPS細胞の培養法をウィキペディアからコピペしたのが図93-6です。成体から採取した細胞を培養してある程度シャーレで増殖したら、必要な遺伝子を組み込んだベクターを投入して細胞内にとりこませ、薬剤耐性テストでとりこんだと確認された細胞をフィーダー細胞(シャーレの底に張り付いて、増殖をサポートする細胞)の上で培養し、増殖させてコロニーを形成させます。一つのコロニーを取り上げて別のシャーレで培養することにより、継代培養が可能なiPS細胞の株ができたことになります。さまざまな微量成分を含むフィーダー細胞や血清を利用すると、それらが放出する、あるいはそれらに含まれているどんな成分が培養に必要なのかというのがブラックボックスになるので、できれば使いたくないのですが、それほど細胞培養はデリケートなものであるということは言えます。山中は「京都の水を使ったからできたなどと言われないようにしよう」と言ったそうです。
 ES細胞やiPS細胞は未分化で無限増殖能を持つわけですが、これを様々な組織に分化誘導するにはどうすればよいのでしょうか? 神経系の細胞に誘導するのは簡単で、血清や増殖因子無しで培養すると、自然に神経系細胞に分化します。上谷らは細胞内における誘導因子としてZpf521というタンパク質を同定しました(20)。高橋らによると網膜細胞はDkk-1 と Lefty-A という因子を培養に添加することによって分化誘導できるそうです(21)。
 最近ではシステマティックな誘導も部分的には可能になっているようです(22)。すでにヒトiPS細胞を心筋細胞に分化させるキットなども販売されています(23)。このような方法で作成した細胞のシートを組織や器官にはりつけると、細胞は自然に組織や器官の一部となって再生医療ができる場合があります。京都大学のiPS細胞研究所では3次元的な心臓組織の作成にも成功しています(24)。このような直接治療に関わる利用以外にも、ES細胞やiPS細胞は薬剤が有効かどうか、どのような副作用があるかなどのさまざまな試験を、実験動物を使用しないで行なうことができるというメリットもあります(25)。

936

図93-6 iPS細胞の培養法

 iPS細胞作成に必要な山中4因子のうち c-Mycは癌を発生させる可能性がある危険な因子ですが、その後 Glis1という因子を代用することができて、こちらのほうが効率が良く、癌化の危険性も少ないということがわかりました(26-27、図7)

937

図93-7 Glis1の利用

 iPS細胞を使った治療は、本人のiPS細胞を用いるのが理想なのですが、それには多大な費用が必要で普及させることは困難です。免疫拒否反応について配慮されたストックを使うという道が現実的です。他人のiPS細胞から誘導された網膜の移植によって滲出型加齢黄斑変性の治療を行なうという手術がすでに行なわれており、現在経過観察中だそうです(28)。良い結果となることを期待したいですね。
 最近iPS細胞の作成を支援する政府の大型予算が2022年度で終了するということが明らかになりましたが、ここまできてこの分野の研究開発が頓挫するというのは残念なので何とかしてほしいです(29)。報道によると、iPS細胞の研究開発があまり企業を潤わすような結果になりそうもないからということでした。私はこれにはもう少し裏があるような気がします。

 

参照

1)Gurdon, J. B.; Elsdale, T. R.; Fischberg, M. (1958). "Sexually Mature Individuals of Xenopus laevis from the Transplantation of Single Somatic Nuclei". Nature. 182 (4627): 64?65. doi:10.1038/182064a0. PMID 13566187.
2)Wabl, M. R.; Brun, R. B.; Du Pasquier, L. (1975). "Lymphocytes of the toad Xenopus laevis have the gene set for promoting tadpole development". Science. 190 (4221): 1310?1312. doi:10.1126/science.1198115. PMID 1198115.
3)ギズモード・ジャパン 少女の卵巣から小さな脳と頭蓋骨の一部、髪の毛が発見される http://news.livedoor.com/article/detail/12531644/
4)Campbell K. H.,  McWhir J.,  Ritchie W. A., Wilmut I., "Sheep cloned by nuclear transfer from a cultured cell line". Nature. vol. 380 (6569): pp. 64–66. (1996) Bibcode:1996Natur.380...64C. PMID 8598906. doi:10.1038/380064a0.
5)Evans M, Kaufman M., Establishment in culture of pluripotent cells from mouse embryos. Nature vol. 292 (5819): pp. 154–156. (1981) doi:10.1038/292154a0. PMID 7242681.
6)Martin G., “Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells”. Proc Natl Acad Sci USA vol. 78 (12): pp. 7634–7638.  (1981) doi:10.1073/pnas.78.12.7634. PMC 349323. PMID 6950406.
7)Thomson, J. A., Kalishman, J., Golos, T. G., et al., Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA vol. 92, pp. 7844–7848. (1995)
8)James A. Thomson et al "Embryonic Stem Cell Lines Derived from Human Blastocysts", Science, vol. 282, 5391, pp. 1145-1147 (1998)
9)クリストファー・スコット著 矢野真千子訳 「ES細胞の最前線(原題: Stem Cell Now)」 河出書房新社 (2006)
10)井樋三枝子 ES 細胞研究に関連する法案の動向 外国の立法 vol. 230 pp. 167-175 (2006)
http://www.ndl.go.jp/jp/diet/publication/legis/230/023008.pdf
11)黄禹錫(ファン・ウソク) 転落の経緯1
https://morph.way-nifty.com/grey/2007/07/post_5a4b.html
12)黄禹錫(ファン・ウソク) 転落の経緯2
https://morph.way-nifty.com/grey/2007/07/post_5dd2.html
13)黄禹錫(ファン・ウソク) 転落の経緯3
https://morph.way-nifty.com/grey/2007/07/post_aab3.html
14)田中幹人編著 「iPS細胞 ヒトはどこまで再生できるのか」 日本実業出版社 (2008) 
15)Kazutoshi Takahashi, Shinya Yamanaka., Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors., Cell Vol. 126, Issue 4,  pp. 663–676 (2006)
http://www.sciencedirect.com/science/article/pii/S0092867406009767
16)https://ja.wikipedia.org/wiki/%E5%BE%B3%E6%BE%A4%E4%BD%B3%E7%BE%8E
17)せるてく・あらかると iPS細胞の樹立--若い力がもたらした幸運 (特集 iPS細胞が与えた衝撃). 細胞工学 28(3), 242-244, (2009)
http://gakken-mesh.jp/journal/detail/9784879624949.html
18)Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S.,  "Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors". Cell. 131 (5): 861–872. (2007)  PMID 18035408. doi:10.1016/j.cell.2007.11.019.
19)万能細胞とバチカン 科学に問う生命の根源 朝日新聞 2008年01月13日
http://www.asahi.com/culture/news_culture/TKY200801130045.html
20)理研プレスリリース ES細胞から神経細胞へ分化開始させるスイッチ因子を解明
http://www.riken.jp/pr/press/2011/20110217/
21)iPS細胞から網膜細胞を作る方法 http://kankyo-j.sakura.ne.jp/kuma2-iPS-RPE1.html
22)iPSポータル(株)のサイト http://ips-guide.com/induction/
23)ヒト多能性幹細胞を心筋細胞に分化させるキット  PSdif-Cardio Cardiomyocyte Differentiation Kit   http://www.funakoshi.co.jp/contents/7324
24)理研プレスリリース ヒトiPS細胞から3次元的な心臓組織を作製し、 致死性不整脈の複雑な特徴を培養下に再現することに成功
http://www.cira.kyoto-u.ac.jp/j/pressrelease/news/171023-160000.html
25)iPS細胞とはなにか 朝日新聞大阪本社科学医療グループ (2011)
26)Maekawa M, Yamaguchi K, Nakamura T, Shibukawa R, Kodanaka I, Ichisaka T, Kawamura Y, Mochizuki H, Goshima N, Yamanaka S.,  "Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1". Nature. 474 (7350): 225–9. (2011)  doi:10.1038/nature10106. PMID 21654807. Lay summary – AsianScientist.
27)前川桃子助教インタビュー 工夫を重ねて出会えたGlis1 が見せてくれた可能性
http://www.cira.kyoto-u.ac.jp/j/pressrelease/html-newsletters/201106/#page_4
28)https://mainichi.jp/articles/20170329/k00/00m/040/124000c
29)日本経済新聞 iPS研究予算「いきなりゼロは理不尽」 山中伸弥所長 
支援継続を政府に求める
https://www.nikkei.com/article/DGXMZO52033220R11C19A1000000/?fbclid=IwAR2DBRXZdXG-AhPLTgRgtGxRbKDG8BFMpQrpBi3StLPJRIdAVixwWjWqFHk

|

« 92.幹細胞 | トップページ | 94.ノックアウトマウス »

コメント

教科書のようにまとまっていて素晴らしい内容ですね。

iPS細胞研究は、細胞を維持培養するだけでも手間やお金がとてもかかるのですが、CiRAは大学とは異なり、人件費や施設維持費なども研究費から捻出しなければならない点がとてもコストがかかるみたいです。
山中先生が先頭に立ってCiRAを牽引していただいてきましたが、とても苦労が多かったと思います。これからはいち研究者として研究に従事されるようですが、たいへん優秀な研究者ですので、研究を楽しみながら素晴らしい成果をあげていただきたいと応援しております。

CiRAでは、世界にさきがけて再生医学の研究を進めていく為にも、多くの方のご支援をいただきつつ、継続していって欲しいです。私も微力ながら、毎月、募金させていただいております。

投稿: kami | 2022年3月23日 (水) 07時51分

コメントを書く



(ウェブ上には掲載しません)




« 92.幹細胞 | トップページ | 94.ノックアウトマウス »