« 2017年9月 | トップページ | 2017年11月 »

2017年10月28日 (土)

生物学茶話@渋めのダージリンはいかが91: 有性生殖

細菌も真核生物も日常的に、活性酸素や環境毒素や放射線・紫外線などによってタンパク質・核酸・脂質が変質する(老化)という危機にさらされており、これをどう乗り越えて若々しい個体を維持していくかということが、あらゆる生物にとって大きな課題です。

細菌はコンパクトで無駄のないゲノムを保持し、高速度の増殖能によって、突然変異の蓄積でダメになった細胞を棄てても、種としては生き残れるという生き方を選択しました。それに加えてDNAの高度な修復システムやプラスミドの移動なども彼らの生存に役立っています。

真核生物の中でも多細胞生物の生存戦略は細菌とは全く異なっていて、個体の大部分の細胞(体細胞)を使い捨て、一部の細胞だけを変質要因からなるべく遠ざけて、生殖細胞系(ジャームライン)として保護して子孫に伝えるという生き方を選択しました。

細菌は主として点突然変異によってゲノムの多様性を維持するという戦略をとっていますが、真核生物は生殖細胞系で減数分裂を行ない、その際の組み換えによってゲノムの多様性を維持するシステムを選択しました。減数分裂によって多様性を獲得したゲノムは1倍体なので、もとにもどるには2倍体にならなければなりません。そこで受精というメカニズム、すなわち有性生殖が誕生したと思われます。

有性生殖について語るには、まずトレーシー・ソネボーン(図1)の業績からはじめるべきでしょう。彼は分子生物学が華やかに進展した20世紀の半ばに、近所の池にいるゾウリムシと顕微鏡と培養容器だけで素晴らしい成果を得た研究者です。

 

A

ゾウリムシは他の繊毛虫同様、体軸方向の前後の部分に分かれるようにして細胞分裂するするというのが通常の増殖の方式で、これは無性生殖です。有性生殖としては細胞の接合が行われます。接合に先立ち大核(転写が主目的の栄養核)が消失するとともに生殖核である小核が減数分裂を行い、4つの核に分かれます。このうち3つは消失し、残った1つがさらに2つに分裂し、このうち1つの核を、接合した細胞が互いに交換します(図2)。その後、それぞれの細胞内の2核が融合することで接合は完了します。大核はこの後それぞれの細胞で新規につくられます(1)。

興味深いことに、この4つの生殖核のうち3つが消失するというのは、ヒトのメスの卵母細胞が減数分裂したときに生まれた4つの卵細胞のうち3つは極体として消滅するというのと似ています。無駄をはぶくということなのでしょうか。

ソネボーンはゾウリムシをエサが枯渇した条件に置くと、上記のような接合だけでなく、図2のようにひとつの細胞の中でnの核とnの核が融合して2nの核ができるオートガミーという現象を発見しました(2)。エサを常に十分に与えておくと、ゾウリムシは接合やオートガミーという有性生殖を起こさず無性生殖で増殖しますが、それらは次第に老化して全滅します。

エサが十分にあるのに死滅してしまうというのは、一見種の存続に不利なように感じますが、ひとつの池に大量発生すると、いずれエサ不足で全滅することになるので、それほど問題にならないかもしれません。それよりこのような寿命のある細胞があることが、多細胞生物出現の基盤になったと思われます。

 

A_2

 

接合にせよオートガミーにせよ、有性生殖を行うと細胞はリセットされて若返り、集団(クローン)全体が老化するということはありません。つまりときどきエサが枯渇するような条件でゾウリムシを飼育すると、寿命とは関係なく長期間飼育できるということになります。オートガミーでは同じDNAを交換するのですから、遺伝情報は全く変わりません。にもかかわらずこのある種の有性生殖を行うことによって細胞は若返り、新しい生命史をきざむことができるのです。

すなわち有性生殖を行なう生物は、有性生殖を行わなかった細胞には寿命があって必ず死ぬということを意味します。このことから寿命とは「有性生殖の後、非可逆的な変化を経て死に至るまでの期間」と定義できます(3)。余談になりますが、満年齢というのは出産を寿命のはじまりとしていて胎内での経過を無視しているので、生物学的には正しくなく、むしろ数え年のほうが受精をはじまりとしているので正しいと言えます。

ゾウリムシがなぜ有性生殖をするか、その理由のひとつは大核と小核に分業をさせることにしたからでしょう。大核はハウスキーピングな転写を常に行っていて、DNAに変異をきたしやすいいわば消耗品であるのに対して、小核は遺伝子の保存を主目的としているため日常は使われません。このことによって遺伝子を修復するという負担が著しく軽減されるのが大きなメリットです。ある一定の期間が過ぎると、変異が蓄積された大核DNAを捨てて、新鮮な小核DNAを元に再出発するという作戦です。

多細胞生物に進化することによって、核の分業は細胞の分業に進化し、生殖細胞と体細胞が生まれました。このことにより、生殖細胞には寿命がなく、体細胞には寿命があるというはっきりとした区別が発生しました。

ところが多細胞生物にも例外的に個体全体をリセットできるものがいることがわかっています。そのひとつはベニクラゲです(4、7、図3)。久保田信氏によると、このクラゲを100回くらい針で刺すと、彼らは死期を予感するのか若返るそうです。そうして世代を引き継ぐ培養を行ない、2年間で10回も若返らせることに成功しました(5、6)。もちろんそのような人為的な操作を行なわなくても、死期が迫ると彼らは若返ります(7)。まさしく自らを多能性幹細胞に還元して、新しい世代を作成するわけです。

 

A_3

ところで読者の皆さんは、では細菌の接合は有性生殖なのかという疑問を抱かれると思います。それは現在では真核生物のトランズポゾンの伝播と同様、遺伝子の水平伝播と考えられています(8)。しかしこれはそう単純には決められないことでもあります。有性生殖を遺伝情報の多様化とする見方からすると、細菌の接合は薬剤耐性を獲得したり、有機化合物に対する分解活性を付与するなどの遺伝情報の受け渡しに貢献しているので、有性生殖の1種と考えられないわけではありません。

という訳で、定義上は細菌の接合も有性生殖としてもいいのですが、真核生物は通常2n(2倍のゲノム情報)とn(1倍のゲノム情報)の世代を持っていて、2n→(減数分裂)→n(生殖細胞)→受精→2n というライフサイクルを繰り返します。細菌はnだけなのですが、どこかでこれがまず2倍になって細胞分裂も2n→4n→2n+2nにならなければなりません。これはニワトリが先か卵が先かという話ではなく、nが先なのはわかっているので、どこで2nの細胞になったかという話です。

2nになると不利なことがあります。それは突然変異がおきても、スペアのDNAが代替してまずいところがすぐ表に出ないので、進化のスピードが著しく低下するということです。そこを乗り越えて減数分裂という作業で組み換えを行ない、ようやく進化のスピードを上げることができるのです。

この細菌:1倍体→古細菌:1倍体→古細菌:2倍体→減数分裂→受精:真核生物というプロセスの中で、2倍体の古細菌というのがミッシングリンクになっています。ひょっとすると適者生存の圧力がほとんどかからなかったと思われる深海の海底に、このような生物がいるのかもしれません(9)。ただ原生生物の中には、ある種の粘菌のように、接合や受精とは関係なくnと2nの細胞が現われる例もあるようです(10)。ですから、ひょっとすると原生生物に進化してから2n世代が出現したのかもしれません。

皮肉なことに2nになってはみたものの、前記したように2nの生物は進化上の不利が生じます。これを回避するため、彼らはときどきn世代の生物に回帰する必要が生じたと考えられます。

高木由臣は図4のような細胞分裂の様式を考えています(3)。2n→4n→2nで細胞分裂を繰り返している生物が、あるとき2nの細胞が分裂した際に、ランダムに染色体を娘細胞に分配し、n、n、2n、染色体無しの娘細胞ができることを仮定します。nの細胞ができるのは染色体に蓄積された突然変異が生存に役立たない場合、それを排除するためと考えます。

nの細胞は致命的な遺伝的欠陥が生じるとバックアップの遺伝情報がないため、ただちに死滅し、これによって有害な突然変異を排除することができます。たとえば図4で遺伝子Aが突然変異を起こして遺伝子aができたとします。遺伝子aが生存に不利な変異だった場合、右端のaしかもたないn世代細胞は死滅するでしょう。

このような細胞分裂様式を獲得した生物のなかから減数分裂・受精を行なうものが現われて、現在の標準的な真核生物に進化したというわけです。減数分裂の際の組み換えシステムを確立した生物は、おそらく2n世代での選別でも事足りるようになったので、n世代をなるべく短くするような方向に進化しているようにみえます。

 

A_4

前期のゾウリムシは減数分裂と接合(ある種の受精)を行なっているわけですが、ここから多細胞生物に進化すると、このシステムは非常に有効に機能します。それは生殖細胞と体細胞という分業を行なうことによって、体細胞は動いたり、栄養をとりこんだり、見たり、聴いたり、感じたりと様々な機能を持って活動し、生殖細胞はひっそりと遺伝子を守ることに専念します。これによって多細胞生物は驚異的な進化を遂げることができました。体細胞の遺伝子はきちんと守る必要がなく、どんどん使って(増殖と分化)ボロボロになれば棄てればいいのです。ここで体細胞の寿命が発生しました。そのかわり生殖細胞の遺伝子はきちんと守って、次の世代に引き継ぐという生き方になります。

最近有性生殖は減数分裂によって遺伝子を混ぜ合わせると言う意義だけではないことが証明されました。ゴミムシダマシというと見たことがない方が多いと思いますが、幼虫はミールワームといわれて、ペットのエサなどに利用されているポピュラーな昆虫です。この生物を使って、アリソン・ラムリーらは多数のオスが少数のメスを争う環境と少数のオスが少数のメスを争う環境を設定し、同系(遺伝子のエラーが蓄積しやすい近親)の集団を7年にわたって飼育してみました。するとオスが交配するメスを争わなくて良いグループは近親交配による弊害で10世代で絶滅したのに対して、厳しくメスを争ったグループは20世代まで生き延びたという実験結果を得ました(11、12、図5)。

ラムリーらは「自身のライバルを効果的に打ち負かし、争いのなかで生殖のパートナーを見つけるためには、個体はあらゆる分野で優秀でなくてはなりません。このため、性淘汰は種の遺伝的優位性を維持・改善する、重要で効果的なフィルターとなります」と結論しています。平たく言えばオスがいかにしてメスに持てようかと努力することが、生物の生存と進化にとって重要であるということでしょう。

 

A_5

有性生殖は遺伝子のまぜあわせによって進化するために必要と思われますが、より短期的には進化と言うより感染あるいは寄生しようという生物にとりつかれないために変化することが必要なのだという考え方があります。

ウィキペディアによると 「ウィリアム・ハミルトン(図6)は1980年から90年にかけて、M・ズック、I・イーシェル、J・シーゲル、R・アクセルロッドらと共に、遺伝的多様性が適応や進化の速度を向上させるという従来の説を種の利益論法だと批判し、多くの生物で遺伝的多型が保持されているのは多型を支持するような選択圧が常に働いているためで、その選択圧をもたらす者は寄生者であると主張しました。種やその他の集団レベルにおける進化を認めてきた古典的な理論とは対照的に、赤の女王効果は遺伝子レベルでの有性生殖の利点を説明することが可能である」 の記載があります(13)。

 

A_6

 

「赤の女王」とはルイス・キャロルの小説『鏡の国のアリス』に登場する人物で、彼女が作中で発した「その場にとどまるためには、全力で走り続けなければならない(It takes all the running you can do, to keep in the same place.)」という台詞から、種・個体・遺伝子が生き残るためには進化し続けなければならないことの比喩として用いられています。

サイエンスライターのマット・リドレー(図6)は、1993年の著書「赤の女王 性とヒトの進化」(14)の中で、「有性生殖の有利さは、常に変化するような環境に棲む生物で発揮される。有性生殖する生物にそのような環境の変化をもたらす者は寄生者(寄生虫、ウイルス、細菌など)と考えられる。寄生者と宿主の間での恒常的な軍拡競争において、この具体例が確認できる。一般に寄生者はその寿命の短さにより、より速く進化する。そのような寄生者の進化は、宿主に対する攻撃方法の多様化を招く(つまり、宿主にとって環境が変化する)。このような場合、有性生殖による組み替えで常に遺伝子を混ぜ合わせ短期間で集団の遺伝的多様性を増加させ続けることは、寄生者の大規模な侵略を止める効果を果たすと考えられる。実際、ボトルネック効果(15)などによって遺伝的多様性が失われた個体群は感染症に弱いことがわかっている。通常分裂(無性生殖の一つ)を行う生物(ゾウリムシや大腸菌など)でも環境によっては接合(有性生殖の一つ)によって遺伝子を混ぜ合わせることは可能である。すなわち寄生者との間で周期的な軍拡競争を行っている生物では、性が寄生者に対する抵抗性を維持するための仕組みであると考えられる。赤の女王仮説は性の起源を説明する理論ではなく、性が維持されるメリットの一つを説明する理論である」と述べています(14)。

 

参照

1)ゾウリムシの生命サイクル
http://www.obihiro.ac.jp/~rhythms/LifeRh/02/98Bio02Paramecium.html

2)John R. Preer, JR., Biographical Memoir:Tracy Morton Sonneborn, National Academy of Sciences (1996)
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/sonneborn-tracy.pdf

3)高木由臣著 有性生殖論 「性」と「死」はなぜ生まれたのか NHKブックス(2014)

4)https://en.wikipedia.org/wiki/Turritopsis_dohrnii

5)Shin Kubota, Repeating rejuvenation in Turritopsis, an immortal hydrozoan (Cnidaria, Hydrozoa). Biogeography vol. 13, pp. 101-103.101-103. (2011)

6)太田出版 ケトルニュース 「若返り」を研究する京大准教授 クラゲを若返らせることに成功
http://www.ohtabooks.com/qjkettle/news/2013/01/28111848.html

7)Piraino S, Boero F, Aeschbach B, Schmid V., “Reversing the Life Cycle: Medusae Transforming into Polyps and Cell Transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa)”. The Biological Bulletin 190 (3): 302-12. (1996)
http://www.journals.uchicago.edu/doi/pdfplus/10.2307/1543022

8)接合 https://ja.wikipedia.org/wiki/%E6%8E%A5%E5%90%88_(%E7%94%9F%E7%89%A9)

9)日本語版:ガリレオ-矢倉美登里/高橋朋子
https://wired.jp/2008/08/05/%e3%80%8c%e3%81%bb%e3%81%a8%e3%82%93%e3%81%a9%e6%ad%bb%e3%82%93%e3%81%a7%e3%81%84%e3%82%8b%e3%80%8d%e7%94%9f%e7%89%a9%e3%80%81%e6%b5%b7%e5%ba%95%e5%9c%b0%e4%b8%8b%e3%81%ae%e3%80%8c%e5%8f%a4%e7%b4%b0/

10)R. R. Sussman AND M. Sussman., Ploidal Inheritance in the Slime Mould Dictyostelium discoideum: Haploidization and Genetic Segregationof Diploid Strains., J . gen. Microbial.,  vol. 30, pp. 349-355 (1963)
http://www.microbiologyresearch.org/docserver/fulltext/micro/30/3/mic-30-3-349.pdf?expires=1509070562&id=id&accname=guest&checksum=AD51BC0EA0609F7EBD6956F7F7A46D94

11)Alyson J. Lumley, Lukasz Michalczyk, James J. N. Kitson, Lewis G. Spurgin, Catriona A. Morrison, Joanne L. Godwin1, Matthew E. Dickinson, Oliver Y. Martin, Brent C. Emerson, Tracey Chapman & Matthew J. G. Gage.,Sexual selection protects against extinction., Nature vol. 522, pp. 470–473 (2015)  doi:10.1038/nature14419
https://www.researchgate.net/publication/276849836_Sexual_selection_protects_against_extinction

12)Wired News: オスの存在理由、実験で証明される
https://wired.jp/2015/06/15/sexual-reproduction/

13)赤の女王仮説 
https://ja.wikipedia.org/wiki/%E8%B5%A4%E3%81%AE%E5%A5%B3%E7%8E%8B%E4%BB%AE%E8%AA%AC

14)The Red Queen: Sex and the Evolution of Human Nature, (1993) 長谷川真理子訳 『赤の女王 性とヒトの進化』 翔泳社 (1995)

15)ボトルネック効果
https://ja.wikipedia.org/wiki/%E3%83%9C%E3%83%88%E3%83%AB%E3%83%8D%E3%83%83%E3%82%AF%E5%8A%B9%E6%9E%9C

|

2017年10月21日 (土)

生物学茶話@渋めのダージリンはいかが90: 染色体の数と性

いろいろな生物で染色体の数はさまざまですが、それには意味があるのでしょうか。また性染色体の数や種類が性によってどう定まっているかについてもみてみましょう。染色体の数について論じる上でよく話題になるのがホエジカです。

ホエジカ属(ムンチャック Muntjac) のシカは東南アジア、中国南部、インドなどに分布しています。図1左はインドホエジカ、右は中国ホエジカ(キョン)で、とても良く似た動物です。キョンは房総半島や伊豆大島で野生化し、食害が問題になっています(1)。もともと日本にはいなくて、人間が持ち込んだ動物なので、駆除というのもひどい話です。

 

A

ホエジカ(Muntiacus)属はウシ科のダイカー(https://en.wikipedia.org/wiki/Duiker)から分岐したグループです。分岐はミトコンドリアDNAから推定されました(2)。染色体の数が近縁種でも著しく異なることで有名です(図2)。図2の学名のあとについている数字は、さまざまな亜種があることを意味します。M.reevesi は更新世初期(100万年以前)に化石がみつかっていますが、M. muntjak と M. feae は更新世中期(50~100万年前)からしか化石がみつかりません。たかだか50万年くらいの間に染色体数が変化し、新しい種が生まれたことになります。

 

A_2

 

インドホエジカとキョンのカリオタイプを比較すると図3のようになります(3)。キョンは私達ヒトと同じ46本の染色体を持ち、そのなかにメスはXX、オスはXYという性染色体が含まれます。ところがインドホエジカはメスは6本、オスは7本の染色体を持ち、オスに余分にある1本がY染色体に相当すると思われますが、最近の文献(4)にY2などという記載があるように、一筋縄ではいかないようです。いずれにしても染色体の数が劇的に変化しても、同じ遺伝子のセットが存在すれば、それほど生物の特徴に変化は発生しないということは結論できそうです。ただ、もしY染色体が単独の染色体であるとすると、減数分裂の際の組み換えの可能性がゼロになるので進化上不利になるのは否めません。

 

A_3

 

前のパラグラフで「染色体の数が劇的に変化しても、同じ遺伝子のセットが存在すれば、それほど生物の特徴に変化は発生しない」と述べましたが、性に関する染色体の問題は特別です。ヒトではメスはXX、オスはXYという組み合わせの染色体が性を指定しています。他の動物ではどうでしょうか? 図4のように大きく分けてXY型(オスがヘテロ)とZW型(メスがヘテロ)があります(5、図4)。

有羊膜類では哺乳類・単孔類がXY型、鳥類・ヘビ類がZW型です。おそらくペルム紀にZW型の爬虫類からXY型の哺乳類型爬虫類が分かれたと思われますが、真偽は定かではありません。XY型というのはここではXY型=メスXX&オスXY・XO型=メスXX・オスXO・XnYn型・XnO型を含む総称です。カモノハシは雄・・・X1Y1X2Y2X3Y3X4Y4X5Y5:雌・・・ X1X1X2X2X3X3X4X4X5X5 という奇妙なカリオタイプですが(XnYn型)(6)、XY型の1種とされています。

ZW型にはメスZW・オスZZというタイプと、メスZO・オスZZというタイプがあります。O(オー)というのは染色体がないという意味です。

 

A_4

 

現在生きているヘビ以外の爬虫類は、環境の温度によってオスかメスかが決まる場合が多いようです(図5)。たとえばカミツキガメ(Chelydra serpentina) では、20°C以下の低温と30°C以上の高温の環境ではメスが産まれ、中間の22~28°Cでは主にオスが産まれます(7)。アオウミガメの場合は、28℃以下ならオス、28~29℃ならオスメス半々、30℃以上の高温だとメスとなります(7)。

一般に遺伝子にバラエティーをつくるより、ともかく種の絶滅を防ぐことを優先しなければならないときは、メスを増やすのが得策です。ただそれぞれの生物が生きている環境によって、オス・メスどちらを優先的に作成すべきかは微妙に異なるでしょう。図5の最も古いタイプの爬虫類に似ていて生きた化石といわれるムカシトカゲが、性染色体による性決定を行うとしてありますが、ウィキペディア(8)をみると、「21℃では雌雄比は半々だが、22℃では80%がオスになる。さらに20℃では80%が、18℃でほぼ100%がメスになる。ただしムカシトカゲの性決定は環境要因(温度)だけでなく遺伝子要因も関係している複雑なものらしいという説がある」 と記載してあるので、ウィキペディアを信頼すべきだと思います。

 

A_5

 

図4に示したように、哺乳類ではXXはメス、XYはオスという染色体型によって性が決定されますが、性を決定する遺伝子はアンドリュー・シンクレア、ピーター・グッドフェローらによって解明されました(9、図6)。彼らによればY染色体上のSRY遺伝子が精巣形成を決定しているということです。クープマン、ラベル=バッジらは、さらにマウスXX胚にSRY遺伝子を導入すると、本来メスになるべきXX胚がオスになることを証明しました(10、図6)。

 

A_6

性決定遺伝子の発見はめざましい業績だと思いますが、図6の4人はノーベル賞にはとどいていません。その理由はいろいろあると思いますが、ひとつはSRY遺伝子の上流に別の遺伝子があるかもしれないということです。すなわちその遺伝子がまずONになって、その遺伝子産物がSRY遺伝子を活性化するのかもしれません。性決定に関連する遺伝子も数多くあることがわかってきました(11)。もちろんSRY遺伝子の下流には、性ホルモンの産生など実際に精巣を形成するためにかかわっている遺伝子群が働いているでしょう。

驚くべき事に、トゲネズミという日本にだけ棲息する絶滅危惧種3種(オキナワトゲネズミ、アマミトゲネズミ、トクノシマトゲネズミ)のうち、アマミトゲネズミとトクノシマトゲネズミは染色体がXO型で、Y染色体が存在しません(12)。黒岩麻里氏によると、これらのネズミはY染色体の一部に変異が生じて、減数分裂がうまくいかなくなり、性決定関連部位がX染色体に転移することによって生き延びたそうです(13)。その転移の際にSRY遺伝子は失われ、CBX2という遺伝子が機能を代替することになったようです。

図7のように、XX/XY型の一般的な哺乳類と同じ性決定様式だったオキナワトゲネズミからアマミトゲネズミやトクノシマトゲネズミが派生したと考えられます。

 

A_7

 

ショウジョウバエは哺乳類と同じくメスはXX、オスはXYの染色体型ですが、性決定のメカニズムは全然違うことがわかっています。Y染色体にはSRYのような性決定遺伝子がなく、常染色体とX染色体の比率で性が決定されます。すなわちショウジョウバエの染色体は2n=8本ですが、Aを常染色体としますと、AAAAAAXX or AAAAAAXXY=♀(A:X=3:1)、AAAAAAXYor AAAAAAXO=♂(A:X=6:1)、となりますが、A:Xの比が大きい場合(6:1)は♂、小さい場合(3:1)は♀となります(14)。

哺乳類の場合原則的にY染色体が1本あればオス、鳥類の場合W染色体が1本あればメスになります。魚類は爬虫類と近いところがあって、性決定遺伝子は存在しますが(メダカでDMY遺伝子がみつかっている)、一筋縄ではいきません。たとえばヒラメはXX/XY型の性決定機構を持っているものの、XX稚魚を18°Cで飼育するとすべてメスになり、同じXX稚魚を20°Cで飼育するとすべてオスになることがわかっています(15)。

またベラは一夫多妻制ですが、その家族のなかで1匹のオスが死ぬと、一番大きなメスがオスに性転換することが知られています(15)。よくテレビなどに登場するコブダイはタイではなく、ベラ科の魚です。このように魚類では遺伝要因よりしばしば環境要因が優先されます。

ソードテイルは一度稚魚を産むと、オスに性転換するとされています(図8)。

 

A_8

 

性は2種類というのが私達の常識ですが、繊毛虫(原生動物)のなかには10種類あるいはそれ以上の性をもつものがいるそうです(16)。こうなると交配する相手を見つけるのが大変だと思いますが、それはフェロモンで解決しているようです。原核生物にも性は存在し、たとえば大腸菌で性を担う遺伝子は、Fプラスミドという形でゲノム本体からは分離独立して存在し、接合(conjugation)の際に相手の細胞に注入されます。

 

参照

1)キョン房総で大繁殖14年で50倍5万頭 農業被害拡大
https://mainichi.jp/articles/20170413/k00/00e/040/242000c

2)Wen Wang, Hong Lan., Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny., Molecular Biology and Evolution, vol.17,

pp.1326-1333 (2000)
https://doi.org/10.1093/oxfordjournals.molbev.a026416

3)Doris H. Wurster, Kurt Benirschke., Indian Momtjac, Muntiacus muntiak: A Deer with a Low Diploid Chromosome Number., Science  Vol. 168, Issue 3937, pp. 1364-1366 (1970)
DOI: 10.1126/science.168.3937.1364

4)http://crancot-nature.blogspot.jp/2016/08/le-sambar-et-le-cerf-aboyeur-deux.html#!/2016/08/le-sambar-et-le-cerf-aboyeur-deux.html

5)https://ja.wikipedia.org/wiki/%E6%80%A7%E6%9F%93%E8%89%B2%E4%BD%93

6)生物史から、自然の摂理を読み解く カモノハシの不思議?
http://www.seibutsushi.net/blog/2008/02/386.html

7)https://matome.naver.jp/odai/2138201788384062201

8)https://ja.wikipedia.org/wiki/%E3%83%A0%E3%82%AB%E3%82%B7%E3%83%88%E3%82%AB%E3%82%B2

9)Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN (1990). “A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif”. Nature vol. 346: pp. 216-217. (1990)   doi:doi:10.1038/346240a0. PMID 1695712.

10)Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R,  “Male development of chromosomally female mice transgenic for SRY”.,  Nature vol. 351: pp.117-121. (1991) doi:10.1038/351117a0. PMID 2030730.

11)諸橋憲一郎 性の決定に働く遺伝子たち 季刊誌「生命誌」通 巻24号
https://www.brh.co.jp/seimeishi/journal/024/ss_4.html

12)https://ja.wikipedia.org/wiki/%E3%83%88%E3%82%B2%E3%83%8D%E3%82%BA%E3%83%9F%E5%B1%9E

13)黒岩麻里 Y 染色体をもたない哺乳類の性決定メカニズム 生化学 第84巻 第11号 pp. 931-934 (2012)

14)啓林館 生物 I :
http://www.keirinkan.com/kori/kori_biology/kori_biology_1_kaitei/contents/bi-1/2-bu/2-3-4.htm

15)長濱嘉孝、小林亨、松田勝., 魚類の性決定と生殖腺の性分化/性転換 タンパク質・核酸・酵素 vol. 49, no. 2, pp. 116-123 (2004)

16)高木由臣著 有性生殖論 「性」と「死」は何故生まれたのか NHKブックス (2014)

 

 

|

2017年10月12日 (木)

生物学茶話@渋めのダージリンはいかが89: ヒトゲノム

ヒトゲノムについて語る前に、まずゲノム(英語ではジノム)とはなにか、どう定義するのでしょうか? これがなかなか一筋縄ではいきません。とりあえずウィキペディアの定義では下記のようになっています(1)。

---------------
In modern molecular biology and genetics, a genome is the genetic material of an organism. It consists of DNA (or RNA in RNA viruses). The genome includes both the genes (the coding regions), the noncoding DNA and the genetic material of the mitochondria and chloroplasts.

拙訳:現代の分子生物学および遺伝学において、ゲノムはひとつの生命体の遺伝物質を指します。それはDNA(RNAウィルスではRNA)で構成されています。ゲノムは遺伝子(コーディング領域)、非コーディングDNA、ミトコンドリアと葉緑体の遺伝物質を含みます。
---------------

ところが日本語版のウィキペディアでは、たとえばヒトゲノムといった場合、ヒトのミトコンドリアの遺伝物質は含まないとも解釈できる記載があるので、英語版とは若干ニュアンスの違いが感じられます(2)。日本語版の方がわかりやすい感じもするので、ここではミトコンドリアのゲノムは含まないことにします。

ここでコーディング、非コーディングという言葉が出てきました。コーディングDNAとは、その部分のDNAが転写されてmRNAとなり、さらに翻訳されてタンパク質となるDNAの領域を意味します。それ以外の部分はすべて非コーディングDNAです。非コーディングDNAには転写されてリボソームRNAやトランスファーRNAを生成するための領域、転写調節因子の結合部位、偽遺伝子、トランスポゾンなどを含みます。

ではヒトゲノムにおいて、コーディング領域、非コーディング領域はどのくらいの割合になっているのでしょうか? 図1をみてみましょう(図1は3、4などを参照して作成)。実際にその塩基配列がタンパク質と対応している、狭い意味でのコーディング領域、すなわちエクソンは全ゲノムの1.3%に過ぎません。ヒトをマシンとしてみると、非常に効率が悪いシステムです。それはもちろんヒトは誰かが設計して作った作品ではなく、進化の結果として様々な歴史をしょって生まれてきたからです。

エクソン以外にイントロンは遺伝子の一部です。rRNA、tRNA、snRNA、miRNAなどさまざまなRNAに対応するDNAも遺伝子です。進化の過程で不要になり崩壊過程にある遺伝子は偽遺伝子です。また遺伝子を制御するために、転写因子と結合するDNAの領域もその意義が明確です。しかしこれら素性と意義が明確なDNA領域を全部たしても、ゲノムの半分にもなりません。ゲノムのそれ以外のほとんどの部分はトランスポゾンで構成されています。

 

A

 

トランスポゾンはその転移能力が活発に発揮されると、頻繁に遺伝子に割り込んだり非相補的な組み換えがおこったりしてホストが死んでしまうので、ある程度暴れたら転移能力を失ってホストと共存します。そうなった生き物しか生き残れません。ヒトのトランスポゾンもその原理は同様で、ほぼすべてのトランスポゾンにおいてトランスポゼースの遺伝子が壊れて不活化しているので、転移することはできません(5)。

万一転移がおこってその細胞に不具合が発生しても、体細胞では代替する他の細胞がいるので、がんが引き起こされるような特殊な場合を除いては問題はおこりません。しかし生殖細胞ではそこからうまれた細胞がすべて転移したトランスポゾンを保有することになるので、深刻な疾病を引き起こす可能性があります。

例えばAluの転移が原因とみられる疾病も数多く知られていますが(6)、それらのほとんどは遺伝病であり、遠い過去に起こったことが現在まで引き継がれていると考えられます。ただしAluも含めてSineは生殖巣において転写されることが知られており、しかもホストにストレスがかかるとその転写量が膨大になるそうです(7)。このことは何か意味がありそうな気がします。

コーディング領域の遺伝子については、ウィキペディアにグラフが出ていたので転載しておきます(8)。意外に構造タンパク質や酵素の割合は高くなく、転写因子・DNA結合因子・トランスポーターなどの遺伝子が多くの領域を占めていることがわかります。

 

A_2

 

ヒトゲノムという概念は抽象的なものですが、その実体は染色体にあります。染色体を顕微鏡で見て形態を観察する技術は19世紀から開発されており、サットンはそれによって20世紀初頭に遺伝因子=染色体という説を唱えました。しかしそれからヒトの染色体は何本あるかという結論までは50年以上の歳月を要しました。アルベルト・ルヴァンとジョー・ヒン・チョー(図3)がヒトの染色体は46本であると報告したのは、ワトソンとクリックがDNAの構造を解明してから3年も後の1956年でした(9)。

 

A_3

色素による染色で分別されたヒト染色体一覧を図4に示します。点線はセントロメアの位置です。X染色体とY染色体はあまりにも形態が異なりますが、この点については次回の記事に書く予定です。

 

A_4

 

古典的なギムザ染色法によって染色体を分別する方法をGバンド法といいます。図5にその例を示します。ATリッチな部位が濃く染まり、GCリッチな部位は薄く染まるとされています(10)。今ではFISH(Fluorescent InSitu Hybridization)法によって染色体の分別がおこなわれます。この原理は図6で説明しますが、図5の下図ではAlu配列を標的として、緑色蛍光色素で染色しています(11)。Aluの多い場所が緑色に染色されます。Alu配列のある場所に大きな偏りがあることがわかります。21番の染色体セットは片方が染色され、片方は染色されていませんが(11)、これが実験上のエラーなのか実際にそうなのかはわかりません。

 

A_5

 

それぞれの染色体には別の遺伝子が乗っているわけですし、遺伝子以外の決まった配列もそこそこあるわけですから、その相補性配列を持つDNAを合成して標識をつければ正確かつ容易に各染色体を分別できるはずです。

図6のように相補性のDNAに例えばビオチンを結合させ、これに「アビジン+蛍光色素」を結合させると(ビオチンとアビジンは強力に結合する)、染色体をそれぞれ特異的に染色することができます。ビオチン-アビジンのセットでなくても、強力に接着する化学物質でDNAまたは蛍光色素と結合する組み合わせのセットなら使えます。

それぞれ別の色に光る蛍光色素を使えば、23対の染色体をそれぞれ色で識別することができます(図6)。100年も四苦八苦して分別していた染色体を、科学技術のちょっとした進展によって、わずかな時間で正確に分別できるようになりました。

 

A_6

 

遺伝病の中には遺伝子のミクロな変化に起因するもの他に、染色体の本数の異常などダイナミックな染色体の変化によるものがあり、それらは染色体検査によって診断できます。最も有名なのはダウン症候群で、この疾患の原因が21番染色体が3本ある(トリソミー)ことによることを解明したのはジェローム・ルジューヌでした(図3、図7、〇で囲んだ部分)。彼は敬虔なキリスト教徒で、生涯妊娠中絶に反対し、このため女性や遺伝学者らから強い反発をうけました。胎児の染色体を検査し、異常な場合には中絶を行う-という道を拓いたことを後悔していたのかもしれません。彼の人となりは映画になっており、DVDはジェローム・ルジューヌ財団から入手できます(12)。ジェローム・ルジューヌ財団はダウン症の親子をケアするための活動を行っています。

日本では敬虔なキリスト教徒が少ないせいでしょうか、ルジューヌが恐れていたことがまさしく現出しています。ある調査では胎児のダウン症が確定した346人の妊婦のうち97%が人工妊娠中絶手術で堕胎したということです(13)

ターナー症候群は通常女性が2本持つX染色体を1本しかもたない(もちろんY染色体はない)患者で(図7)、低身長で第二次性徴を欠くなどの症状を発症します(14)。ウィリアムズ症候群は第7染色体セットの1本のエラスチン遺伝子周辺の複数の遺伝子が欠失する病気で(図7)、知能低下などの精神遅滞・心臓疾患などを発症するとされています(15)。

 

A_7

 

遺伝子は各染色体に同じ密度で存在するのではなく、疎な染色体と密な染色体があります(16)。図8で塩基対(緑 Base pairs)の数に対して遺伝子の数(ピンク)が多い場合密ということになります。13番・18番・Y染色体が特に遺伝子がまばらにしか存在しない染色体であることがわかります。13番・18番の染色体は、図5ではAlu配列が特に少ない染色体であることがわかります。関連性があるようにみえますが、これは偶然なのでしょうか?

 

A_8

 

さまざまな遺伝子の中でもリボソームRNAの遺伝子は特別です。なにしろリボソームRNAは、細胞内全RNAの60%の重量を占めるほど大量に存在し(17)、遺伝子も400コピーが存在するほどゲノムの中でメジャーな存在なのです(18、文献19では350コピーになっています)。

リボソーム遺伝子は図9のような構造をとっています。すなわち18S、5.8S、28Sがスペーサーをはさんで連結しており、ひとつのオペロンを構成しています。このスペーサーはITSと呼ばれており、イントロンのように転写されます。オペロンとオペロンの間にはNTSという転写されないスペーサーが存在します。ヒト染色体においては13番・14番・15番・21番・22番染色体の短腕の大部分がリボソーム遺伝子領域とされています(20)。

リボソームにはもう1種5Sタイプがありますが、これは1番目の染色体に遺伝子のクラスターが存在します(21)。図9のリボソーム遺伝子群はRNAポリメラーゼ I によって転写されますが、5SRNA遺伝子はRNAポリメラーゼ III という特殊なRNAポリメラーゼによって転写されることが知られています。

 

A_9

 

トランスファーRNA遺伝子も、リボソームRNA遺伝子に次いでゲノムの大きな領域を占めていると思われます。これ以外の非コード領域には図10で示すようなもの(1から7まで)があります。

細菌はゲノムのサイズが小さく、サーキュラーなので複製開始点がひとつでいいのですが、真核生物はゲノムのサイズが大きく、複数の直鎖状DNAからなるので、1本のDNAについて複数の開始点があることは必須で、図10の1のような形になります。複製開始点には多くのタンパク質が結合して鎖を大きくほどかなくてはなりません。したがって、このための塩基配列をDNAが用意しなければなりません。遺伝子の特に上流にはプロモーターやエンハンサーが必須で、ここにも特定の塩基配列が必要です。

この他染色体組み換えに必要な構造、セントロメア、テロメア、核の構造タンパク質にDNAを結合させる部位などに特定の塩基配列が必要です。

 

A_10

 

参照

1)https://en.wikipedia.org/wiki/Genome

2)https://ja.wikipedia.org/wiki/%E3%82%B2%E3%83%8E%E3%83%A0

3)http://researchmap.jp/jo6z5r93q-17709/#_17709

4)https://www.ncbi.nlm.nih.gov/books/NBK21134/

5)西川伸一 JT生命誌研究館 ゲノムの解剖学 (2015)
https://www.brh.co.jp/communication/shinka/2015/post_000011.html

6)小林武彦編 「ゲノムを司るインターメア 非コードDNAの新たな展開」 化学同人 p. 209  (2015)

7)東京工業大学大学院 生命理工学研究科 進化・統御学講座(岡田研究室)HP:
http://www.fais.or.jp/okada/okada-past/research/keywords/m01_alu.html

8)https://en.wikipedia.org/wiki/Human_genome

9)Joe Hin Tjio and Albert Levan., The chromosome number of man. , Hereditas vol. 42:  pages 1–6, (1956)
http://onlinelibrary.wiley.com/doi/10.1111/j.1601-5223.1956.tb03010.x/pdf

10)http://ipsgene.com/genome/dna/band-method

11)https://en.wikipedia.org/wiki/Karyotype

12)ジェローム・ルジューヌ財団 https://lejeunefoundation.org/
または https://www.ds21.info/?p=8644

13)https://mamanoko.jp/articles/26383

14)https://en.wikipedia.org/wiki/Turner_syndrome

15)https://en.wikipedia.org/wiki/Williams_syndrome

16)https://en.wikipedia.org/wiki/Chromosome

17)小林武彦、赤松由布子 リボソームRNA 遺伝子の不安定性と生理作用-出芽酵母を中心にして 生化学 第85巻 第10号,pp. 839-844,(2013)
http://www.jbsoc.or.jp/seika/wp-content/uploads/2014/06/85-10-03.pdf

18)奥脇暢 リボソームRNA 遺伝子と核小体構造の調節  生化学 第85巻 第10号,pp. 845-851,(2013)
http://www.jbsoc.or.jp/seika/wp-content/uploads/2014/06/85-10-04.pdf

19)小林武彦編 「ゲノムを司るインターメア 非コードDNAの新たな展開」 化学同人 p. 111 (2015)

20)小林武彦編 「ゲノムを司るインターメア 非コードDNAの新たな展開」 化学同人 p. 2 (2015)

21)Timofeeva Mla et al.,  Organization of a 5S ribosomal RNA gene cluster in the human genome., Mol Biol (Mosk). vol. 27(4):  pp. 861-868. (1993)
https://www.ncbi.nlm.nih.gov/pubmed/8395649

 

 

|

« 2017年9月 | トップページ | 2017年11月 »