« 2017年2月 | トップページ | 2017年4月 »

2017年3月28日 (火)

生物学茶話@渋めのダージリンはいかが67: 糖タンパク質

糖が生体構成成分となる場合、しばしばタンパク質や脂質と共有結合した複合分子として利用される場合があります。今回は糖とタンパク質の複合体に着目します。谷口直之先生によると「タンパク質のおよそ50%以上には糖鎖が付加されている」そうです(1)。これが多少盛った話だとしても、糖タンパク質が生体内でありふれた存在であることに間違いはありません。

糖がタンパク質と共有結合する場合に通常2つの方法があって、ひとつはN-結合型、いまひとつはO-結合型です(2)。N-結合型の場合、タンパク質のアスパラギンの側鎖アミノ酸の窒素原子(N)にグリコシド結合します(図1)。アスパラギンならどれでも良いわけではなく、アスパラギン-(任意アミノ酸)-セリン/スレオニンという配列に限られます。最初の糖鎖は多くの場合N-アセチルグルコサミン(GlcNAc)です。

O-結合型の場合は、タンパク質のセリンまたはスレオニンの水酸基とO-グリコシド結合します。タンパク質と結合する最初の糖鎖は多くの場合N-アセチルガラクトサミンです(図1)。ひとつのタンパク質分子が複数の糖鎖をもつこともありますし、N-結合型とO-結合型の両者の糖鎖をもつこともあります。同じ種類のタンパク質でも糖鎖の付いている分子と付いていない分子がありますし、糖鎖が付いていてもその構造が異なる場合もあります。

 

A


糖には無数のバラエティーがありますが、タンパク質に結合する糖鎖を構成する単糖は、ほぼ図2に示した8種に限られています。これは合成する酵素の自由度やバラエティーに限界があるからでしょう。8種類とは少ないようですが、DNAが4種の塩基で構成されていることを考えると、8種類でも順列組み合わせを考えると膨大な種類の糖鎖ができ得ることは明らかです。この中にアミノ糖が3種はいっていることは特徴的です。N-アセチルグルコサミンはグルクナック、Nーアセチルガラクトサミンはギャルナックとよばれることもあります。1種の愛称のようなものです。

 

A_2


N-グリコシド結合を行ってできる糖鎖は3つのグループ、すなわち複合型(コンプレックス型)・高マンノース型(ハイマンノース型)・混成型(ハイブリッド型)に分類できます(3)。いずれもアスパラギンにN-アセチルグルコサミンが結合し、その先図3の破線に囲まれた部分は共通の構造(コア)ですが、さらにその先複合型ではN-アセチルグルコサミン→ガラクトースという順に並び、高マンノース型ではマンノース→マンノース、混成型ではマンノース・N-アセチルグルコサミン・N-アセチルグルコサミン→ガラクトースという3種類構成になっています。

 

A_3

 

O-グリコシド結合を行ってできる糖鎖は、N-グリコシド結合の場合よりもバラエティーに富んでいますが、コアは8種類に分類できます(3、4)。いずれもタンパク質のセリンまたはスレオニン残基と最初に結合する糖はN-アセチルガラクトサミンで、α型結合でアミノ酸と結合します。2番目の糖がガラクトース・N-アセチルガラクトサミン・N-アセチルグルコサミンなどとなり、分岐もあるので、8種類のバラエティーが発生します(図4、参照 3、4)。図4下方のエピトープは抗体によって認識される部位(抗原)のことで、血液型については糖脂質のところで述べます。3番目以降は千差万別で、分類する意味も多分ありません。

 

A_4

 

これらの糖鎖の構造決定には多くの人々が関わって解明されてきましたが、N-結合型糖鎖の根元、すなわちタンパク質と結合している糖がN-アセチルグルコサミンであることを解明したのはサウル・ローズマン (1921-2011、図4)です(5、6)。彼は「セレンディピティー(思いがけない発見)のプリンス」と呼ばれていたそうです(7)。

 

A_5

では個別の例についてみていきましょう。まずエリスロポエチンをみてみますと、3ヶ所にN-結合型糖鎖が、1ヶ所にO結合型糖鎖が認められます(図6)。

エリスロポエチンは主に腎臓で合成されるタンパク質ホルモンで、赤血球の増殖や分化を促進します。腎不全が貧血を伴うのは、このホルモンの合成が低下するからです。糖鎖がついていないホルモンも生理活性がないわけではないのですが、糖鎖が付くことによって生理活性が高まり、安定性も増加します。

図6に示された所定の場所に糖鎖が結合することによって最大の活性が得られることが、村上真淑らによって最近証明されました(8)。糖鎖の位置にそこまで遺伝的セレクションがかかっているとは、私にとってはちょっとした驚きでした。腎不全による貧血をエリスロポエチン投与によって治療するというやり方は、かなり以前から行なわれています。

 

A_6

 

ムチンは納豆や山芋などネバネバした食品にはたいてい含まれている糖タンパク質ですが、ヒトの粘液などにも含まれており、なんとヒトは20種類以上のムチン遺伝子を保有しているそうです(9)。セリンとスレオニンを多数含んでいるアミノ酸配列なので、O結合型糖鎖が非常にできやすい状態にあり、タンパク質の周りに密林のように糖鎖が生えています(図7)。そのため抜群の水分保持力があり、乾燥を防ぐほか、体表にゲル状に広がっていると感染を防ぐこともできます。粘膜を保護する役割も重要です。これだけ多数の糖鎖に被われていると、タンパク質分解酵素がアクセスしにくくなるので、壊されにくい分子になっています。胃が消化液で消化されないのも、胃粘膜のムチンのおかげなのでしょう。

 

A_7

 

最後に細菌の細胞壁に使われているペプチドグリカンをみてみましょう。図8は典型例(黄色ブドウ球菌)ですが、N-アセチルグルコサミンとN-アセチルムラミン酸がひとつのユニットになっており、糖鎖はN-アセチルムラミン酸の乳酸残基にテトラペプチドが結合しています(図8左図)。このユニットがタンデム、およびペプチドを介してラテラルに結合して細胞壁を形成しています(図8右図)。

細菌によって使われている糖の種類も変わり、ペプチドの種類や長さも変わりますが、グラム陽性菌は分厚いペプチドグリカン層で細胞全体が被われており、細胞膜が脆弱であっても生きていけるわけです(4、10)。分厚いペプチドグリカン層がクリスタルバイオレットという色素で染まるので、グラム陽性菌という名前になりました。

 

A_8

 

参照

1)理化学研究所 研究紹介: 
http://www.riken.jp/research/labs/grc/sys_glycobiol/

2)IonSource (Mass Spectrometry Educational Resource)
http://www.ionsource.com/Card/carbo/nolink.htm

3)大阪大学 Kajihara Laboratory:
http://www.chem.sci.osaka-u.ac.jp/lab/kajihara/background.html

4)Lianchun Wang, O-GalNAc Glycans:
https://www.ccrc.uga.edu/~lwang/bcmb8020/O-glycans-B.pdf

5)Fabrizio Monaco and Jacob Robbins,  Incorporation of N-Acetylmannosamine and N-Acetylglucosamine into Thyroglobulin in Rat.  Thyroid in Vitro.,  J. Biol. Chem., Vol. 248, No. 6,  pp. 2072-2077 (1973)
http://www.jbc.org/content/248/6/2072.full.pdf?sid=b4c0f52f-ec70-497d-b615-fe3651ae6f9b

6)Saul Roseman, The synthesis of complex carbohydrates by multigulycosyltransferase systems and their potential function in intercellular adheshion. Chem. Phys. Lipids vol. 5, pp. 270-297 (1970)

7)Biologist Saul Roseman, 90, champion of serendipitous discovery
http://archive.gazette.jhu.edu/2011/07/18/biologist-saul-roseman-90-champion-of-serendipitous-discovery/

8)ResOU: 精密化学合成により調整した糖タンパク質:エリスロポエチンの糖鎖機能を解明
http://resou.osaka-u.ac.jp/ja/research/2016/20160116_1

9)https://ja.wikipedia.org/wiki/%E3%83%A0%E3%83%81%E3%83%B3

10)こちら

|

2017年3月21日 (火)

生物学茶話@渋めのダージリンはいかが66: 多糖類

多糖類はタンパク質と異なり、その構造が遺伝子によって指定されていないので、例えばグリコーゲンといっても、同じグリコーゲン分子はないというくらい多様性があります。これはたとえばケヤキの幹や枝が同じ形の樹木がないのと似ています。それでもケヤキをクスノキや桜と識別できるように、多糖類も構成ユニットである単糖の種類、結合の様式などで分類することはもちろん可能です。1種類の単糖で構成されている多糖類をホモグリカン、複数の単糖で構成されているものをヘテログリカンといいます(1)。

まずホモグリカンの代表として、グルコースだけで構成される多糖類をみていきましょう。私たちが主食としている米や芋の主成分はでんぷんです。デンプンは主に植物によってつくられる多糖類で、α-1,4-結合でグルコースが直鎖状に重合したアミロースと、α-1,4結合だけでなく、ところどころでα-1,6-結合で分岐しているアミロペクチンがあります(図1)。

お米の場合、うるち米はアミロースとアミロペクチンがおよそ2:8なのに対して、「もち米」はアミロペクチンのみでアミロースを含んでいないので、枝分かれ構造のあるアミロペクチンがお餅の粘りのもとなのでしょう(3)。アミロースもアミロペクチンもα-D-グルコースだけが重合したもので、β-D-グルコースは含まれていません(図1)。

 

A


デンプンは唾液や膵液に含まれるアミラーゼによって分解されますが、アミラーゼは1種類ではなく、図2のようなα型、β型、γ型、イソ型という4種類があります。α型はいわゆるエンドタイプの分解酵素で鎖の任意の位置で切断します。ただし切断できるのは 1,4 結合のみで、1,6結合(分枝する位置)は切断できません。グルコースダイマーのマルトースは切断できません。

β型は植物などに存在するエクソタイプの分解酵素で、鎖の末端から2つのグルコースをマルトースの形で切り離します。γ型は同じくエクソタイプで、鎖の末端からひとつづつグルコースを切り離します。ヒトの場合マルトースを2つのグルコースに分解する活性も高いとされていて、マルターゼあるいはグルコアミラーゼとも呼ばれています。1,4 結合のみならず1,6結合も分解できるので(4)、αタイプとγタイプのアミラーゼがあればデンプンをグルコースにほぼ分解できます。イソアミラーゼは植物などに存在する酵素で1,6結合を特異的に切断します。

 

A_2

セルロースはβ-D-グルコースだけが重合した多糖類で、α-D-グルコースは含まれていません(図3)。セルロースは主に植物によって作られますが、草食動物はセルロースを主な栄養分としています。草食動物やシロアリは腸内細菌によってセルロースを分解しており、これらの細菌を体内に共生させることによって生体の素材やエネルギーを得ているわけです。

セルロースはβ-D-グルコースがβ-1,4-結合によって重合した直鎖状のポリマーですが、直鎖同士が非常に水素結合をつくりやすい構造になっているので、シート状の形態になります(図3)。構造は非常に安定で、熱水や酸・アルカリに溶けません。ヒトはこのことを利用して衣服(コットン)や紙を製造しました。

 

A_3

 

細菌などが持つセルロース分解システムは複雑ですが、大まかには図4のような3種類の酵素の作用で行われます。このような分解系を利用してさまざまな有用物質を生産しようとする試みは盛んに行われています(5)。特にセルロースからエタノールを得てエネルギー源にしようとする試みは注目されています。セルロースというタイトルの専門誌も存在します(6)。

 

A_4

 

植物がデンプンを貯蔵するのに対して、動物はグリコーゲンを貯蔵します。グリコーゲンはα-D-グルコースが α1,4 および α1,6結合で重合しているという意味ではデンプンと同じです。ただ分岐は非常に多く編目のような構造になっています(図5)。分岐が多いということの利点は、少ない容積に多数のグルコースを詰め込むことができるということです。

もうひとつグリコーゲンに特徴的なのは、最初にグリコジェニンという特異な酵素が働くことです。この酵素は自らが基質となり、自分のチロシンのOHにグルコースを結合させ、そこからグルコース鎖を延長させることができます(7、8)。

 

A_5

 

グリコーゲンをつくるための最初の反応は

UDP-alpha-D-glucose + glycogenin ⇌ UDP + alpha-D-glucosylglycogenin

次の反応は

alpha-D-glucosylglycogenin + UDP-alpha-D-glucose ⇌ UDP + alpha-D-glucosylglycosylglycogenin

となります。グルコースにUDP(ウリジン2リン酸)がくっついているのは、反応を進行させるためにグルコースを活性化するというしかけです。

ある程度鎖が延長されるとグリコジェニンはお役御免となり、グリコーゲンシンテースや分岐酵素にバトンタッチして鎖延長や分岐が続行されます。グリコジェニンという奇妙な酵素はクララ・クリスマン、ウィリアム・ウェランらによって発見されました(9-12、図6)。クララ・クリスマンらはUDP-グルコ-スを14Cでラベルして肝臓抽出液に投入してインキュベートすると、トリクロル酢酸で沈殿する分画にラベルが移行し、これによってグルコースオリゴマーがタンパク質に結合していることを示唆しました。ウェランらはこの結合が共有結合であることを証明しました。グリコーゲンがタンパク質と共有結合しているかどうかは、昔激しい論争があったようで、ウェランも刺激的なタイトルの総説を書いています(11)。自分が基質になる酵素というのは他にないわけではなく、たとえばタンパク質分解酵素のなかには自己消化を行うものもありますが、それはある酵素分子が自分自身を消化するという意味ではありません。



A_6

グルコースの誘導体のひとつとしてN-アセチルグルコサミンについては前回述べましたが、N-アセチルグルコサミンがβ-1,4-結合を繰り返してポリマーになったものがキチンです(図7)。節足動物の体表を被う外骨格の素材として用いられています。セルロースと同様に分子間の水素結合が強力で、丈夫な線維・シートを形成することができます。創傷治癒のための医療用品・化粧品・衣料・農薬などの素材に用いられています(13)。

 

A_7

 

さて私たちオピストコンタと植物(プランタ=アーケプラスチダ)というかけ離れた分類学上の位置にある生物が似たような多糖類、すなわちデンプンとグリコーゲンをエネルギー源として貯蔵しているのはちょっとした驚きですが、両者と分類学上離れた位置にあり、ストラメノパイルというスーパーグループに属する昆布などはどのような多糖類を合成しているのでしょうか? 

ウィキペディアによると昆布は夏から秋にかけて重量の40~50%を占めるくらい大量のラミナランという多糖類を合成して貯蔵しておくそうです。それはやはりグルコースのポリマーなのですが、結合様式が β1,3結合 と β1,6結合 からなっていて、オピストコンタやプランタとは大きく異なっています(図8)。

 

A_8

ヘテログリカンの代表としてヒアルロン酸を紹介しておきます。ヒアルロン酸はN-アセチルグルコサミンとグルクロン酸がβ-1,4-結合した2糖を基本単位として、これらがβ-1,3-結合で重合したものです(図9)。ヒアルロン酸は主に細胞外に放出されて、細胞間のマトリクスとして存在します。ぬめぬめしたゲルのような性質で、関節がなめらかに動くように機能しています。また皮下の結合組織や眼球の硝子体に多量に存在しますが、これはヒアルロン酸が水を保持する能力に優れ、組織や細胞をひからびさせないようにする作用があるためと思われます。

膝の関節に注入することによって疼痛を軽減できますが、徐々に分解されるので、ある期間が過ぎると追加が必要になります。経口ではほぼ効かないようです(14)。毒性がほとんどないのでシワとりなど美容整形にもよく用いられますが、この場合も徐々に分解することは避けられません。また間違って動脈に針が入ると、血管が詰まって悲惨なことになってしまうので、個人的にはあまりおすすめできません。

 

A_9

 

参照

1)https://kotobank.jp/word/%E3%82%B0%E3%83%AA%E3%82%AB%E3%83%B3-764487

2)ホートン 生化学第3版 p.183 東京化学同人(2002)

3)JA全農やまぐち http://www.yc.zennoh.or.jp/rice/mamechishiki/mame01-4.html

4)酵素辞典 http://www.amano-enzyme.co.jp/jp/enzyme/4.html

5)三重大学 http://www.bio.mie-u.ac.jp/~karita/sub3.html

6)http://link.springer.com/journal/10570

7)畠山巧 ベーシック生化学 第11章 グリコーゲン代謝と糖新生

8)https://en.wikipedia.org/wiki/Glycogenin

9)Krisman CR, Barengo R., A precursor of glycogen biosynthesis: alpha-1,4-glucan-protein. Eur. J. Biochem. vol.52, pp. 117–23 (1975)  doi:10.1111/j.1432-1033. 1975. tb03979.x. PMID 809265

10)Whelan WJ., The initiation of glycogen synthesis. BioEssays vol.5, pp. 136-140 (1986)

11)Whelan WJ., Pride and prejudice: the discovery of the primer for glycogen synthesis., Protein Sci. vol.7, 2038–2041 (1998)  doi:10.1002/pro.5560070921. PMC 2144155Freely accessible. PMID 9761486

12)Whelan WJ., My Favorite Enzyme Glycogenin., IUBMB Life, Vol. 61, pp. 1099-1100 (2009)

13)キチン・キトサン利用技術: http://www.inpit.go.jp/blob/katsuyo/pdf/chart/fkagaku19.pdf

14)変形性膝関節症: http://www.jcoa.gr.jp/health/clinic/knee/koa.pdf

 

 

|

2017年3月13日 (月)

生物学茶話@渋めのダージリンはいかが65: 糖質

生体は核酸とタンパク質だけでできているわけではなく、糖質や脂質ももちろんその構成要素です。糖質の構造の基本は19世紀末に、ここにも何度も登場しているエミール・フィッシャーによって明らかにされ、構造式の書き方も彼が考案したものが現在も使われています(1)。糖質でやっかいなのは異性体が非常に多いことで、きちんと整理しておかないと混乱します。

糖の話に入る前に、図1に異性体のおおまかな分類を示します。

 

A

1.異性体:異性体(isomer)とは、同じ数、同じ種類の原子を持っているが、違う構造をしている物質のこと。

2.構造異性体:構造異性体(structural isomer)とは、組成式は等しいが原子の間の結合関係が異なる分子のこと。ブタンと2-メチルプロパン:組成式はともに C4H10 であるが、ブタンの構造式は H3C-CH2-CH2-CH3 であるのに対し、2-メチルプロパンは H3C-CH(CH3)-CH3 です。

3.立体異性体:立体異性体(stereoisomer)は、同じ構造異性体同士で、3次元空間内ではどう移動しても重ね合わせる(スーパーインポーズする)ことができない分子。

4.鏡像異性体:鏡像異性体(enantiomer)とは立体異性体のうち、左手と右手のように鏡に映した形ふたつの分子の関係を意味し、鏡像異性体をもつ分子をキラル分子といいます。炭素原子が持つ4価の共有結合の相手がすべて異なる場合、必ず鏡像異性体があり得るので、このような結合を行っている炭素を不斉炭素(キラル炭素)といいます。例えばアラニンは不斉炭素にNH2、CH3、H、COOHという4種のグループが結合しているので、LアラニンとDアラニンという互いに鏡に映した形の鏡像異性体が存在します。

5.ジアステレオマー(Diastereomer):立体異性体のうち鏡像異性体でない分子。シス-トランス異性体などはジアステレオマーです。

 

糖類を代表する分子としてまずグルコースをとりあげましょう。グルコースは水溶液中では図2のように、α型とβ型の環状体と中央の鎖状体の3つの形が平衡状態にあります。鎖状体はα型またはβ型に対して構造異性体、α型とβ型は立体異性体ということになります(1、2)。α型とβ型を互いにアノマーであるという表現も用いられます。

 

A_2

 

鎖状構造のグルコースの異性体に着目してみます(図3)。上から炭素に番号を付けると、2番目から5番目の炭素が不斉炭素です。ここで5番目の炭素の左右と下の構造を固定し(赤で示したOHが右にある)、上だけ可変とすると、図3のように8種類の異性体が考えられます。それぞれの異性体に鏡像異性体が存在するので16の異性体が存在します。5番目の炭素のOHを左側にもってくると異性体の数は32となります。それぞれの異性体には名前があります(3)。フィッシャーは当時の研究法で III がグルコースであることを示しました。

 

A_3

 

グルコースには図2で示した3つの形があるので、32x3=96の異性体があることになります。さらにいす型やふね型の立体配座の異性体があるので(4)、それらをカウントすると、とんでもない数になります。糖質のおそるべき複雑さを垣間見ましたが、自然界に存在するグルコースはほとんどが 図3-III の5番目のCの右側にOHがあるD体です(5)。アミノ酸の場合H2N-C-COOHと書いて、Cの下にHを書きます。これがL体。糖の場合H-C-OHと書いて、Cの下にCH2OHと書きます。これがD体です。歴史的には結晶に光を照射したときに、右にまがる(dextro-rotatory)か左にまがる(levo-rotatory)かで判定されました(DL法)。もっと理論的な命名法がRS法ですが、ここでは説明しないので知りたい方は文献(6)を見て下さい。アミノ酸と糖に関してはDL法が一般的です。

グルコースのようにひとつの環でできている糖を単糖とよびます。単糖にはグルコースのように5つのCとひとつのOで構成される環が基本となっているヘキソースと、リボースやキシロースのように4つのCとひとつのOで構成される環が基本となっているペントースが存在します(図4)。この6員環(5C+1O)をピラン、5員環(4C+1O)をフランとよびます。ピラン環でもフラン環でもOと結合している炭素はO以外にC・H・OHと結合している場合不斉炭素であり、HとOHが上下逆のα型とβ型を生じます。リボースはRNAの構成成分ですが、2の位置のOHがHに変わったデオキシリボースはDNAの構成成分です。デオキシリボースのような糖を一般にデオキシ糖とよびます。

 

A_4

 

グルコースの2の位置のOHはアミノ基と置換されることもあり、この場合はグルコサミンとよばれます。一般的にOHがアミノ基と置換された糖をアミノ糖といいます。またアミノ基がアセチル化された場合、N-アセチルグルコサミンとよばれます。グルコサミンやN-アセチルグルコサミンは後に述べる複合糖質・ヒアルロン酸・糖脂質の材料として重要な物質です。グルコサミンはサプリメントとしても有名ですが、関節症などに効くかどうかは疑わしいと考えられています(7)。

 

A_5

鎖状の糖の上端に書かれたアルデヒドのOと下端のCH2OHのH2のうちひとつのHが失われて環状化するとラクトンが形成されます。グルコースの場合グルコノラクトンとなります。このグループの化合物にはビタミンC(アスコルビン酸)という人類には必須の物質があります(図6)。ビタミンCはグルコースからやや複雑な経路で合成されます(8)。ビタミンCは私たちの体の中でコラーゲン合成、スーパーオキサイドの除去などの重要な役割を果たしています。

私たちはビタミンCを体内で合成できません。私たちの祖先のサルが果実を主食としてビタミンCを日常的に外界から得ていたため、合成経路をになう酵素が突然変異したまま活性が失われたと考えられています。霊長類の中でも、キツネザル・アイアイ・ロリスという原始的なグループはビタミンCを合成することができますが、ヒトを含めたそれ以外のグループは合成できません。

 

A_6

 

さて単糖だけでも膨大な異性体が存在するわけですが、これが2糖となるとそのかけ算となる上多彩な結合が存在しますから手に負えません。とはいえスキップするのもどうかと思うので、少しだけ紹介しておきます(図7)。グルコース+グルコースでできている麦芽糖(マルトース)は、デンプンがαまたはβアミラーゼによって分解されたときに生成する2糖類です。甘味料の他点滴にも使用されています。急激な血糖値の上昇を防ぐには2糖が有効です。麦芽糖はαグルコシダーゼの作用によって徐々に分解され、2分子のグルコースになります。

 

A_7

 

ショ糖(シュークロース)はグルコース+フルクトース(フラクトース)で構成される、自然界に最も多量に存在する2糖です。自然界では植物だけが合成できる化合物です。動物はインベルターゼという酵素でグルコースとフルクトースに分解して利用することができます。

どうしてサトウキビやテンサイがショ糖を大量に蓄積するのか、調べましたがわかりませんでした。私が想像するに、ショ糖はデンプンなどと違って草食動物に対して歯を溶かすなどなんらかの毒性があり、サトウキビやテンサイを好んで食べる動物に危害を与えて、それらの動物に食べ尽くされるのを防いでいるのかもしれません。

 

A_8

 

糖の正式な命名法は(9)を参照していただくことをおすすめします。ただIUPACが推薦する正式名称は、専門家が論文を書くときに使うくらいで、あまり普及しているとは言えないと思います。

 

参照

 

1)http://受験理系特化プログラム.xyz/organic/fischer-3

2)グルコースの構造式:
http://sci-pursuit.com/chem/organic/glucose_structure.html

3)32コの異性体:
http://ameblo.jp/apium/entry-10212514628.html

4)https://ja.wikipedia.org/wiki/%E3%81%B5%E3%81%AD%E5%9E%8B

5)http://kusuri-jouhou.com/creature1/suger.html

6)立体配置の記述法:
http://www.chiral.jp/main/R%26S.html

7)Wandel, Simon; Jüni, Peter; Tendal, Britta; Nüesch, Eveline; Villiger, Peter M; Welton, Nicky J; Reichenbach, Stephan; Trelle, Sven (2010). “Effects of glucosamine, chondroitin, or placebo in patients with osteoarthritis of hip or knee: network meta-analysis”. BMJ 341. doi:10.1136/bmj.c4675. ISSN 0959-8138.
http://www.bmj.com/content/341/bmj.c4675

8)ビタミンCの真実:
http://www.vit-c.jp/vitaminc/vc-02.html

9)http://nomenclator.la.coocan.jp/chem/text/carbohy.htm

 

 

|

2017年3月 6日 (月)

生物学茶話@渋めのダージリンはいかが64: 制御タンパク質他

数回にわたってタンパク質とは何かをざっくり述べてきましたが、最後に「制御因子他」のジャンルに属するものについてふれておきましょう。

酵素などは基本的には作られる量と壊される量によって制御されています。その他に他の酵素によって修飾されたり、ビタミンや生成物などの低分子物質によっても制御されます。しかし中にはわざわざ自分の活性を制御する専門のタンパク質が遺伝子として存在するようなラグジュアリーな酵素も存在します。ODC(オルニチン脱炭酸酵素)はそのひとつです。

オルニチンはすでに述べたように(1)、尿素サイクルに含まれる物質で、アンモニアを解毒し排出するうえで重要な位置にありますが、それ以外にODCによってオルニチンはプトレシンに代謝されます。

H2N-(CH2)3-CH(NH2)-COOH(オルニチン) → H2N–(CH 2)4–NH2 (プトレシン)+ CO2

プトレシンを起点として、いわゆるポリアミン類-スペルミジン・スペルミンが合成されます。ポリアミンは精液に多量に含まれますが、その機能は細胞増殖、イオンチャンネルの制御、DNAの安定化など多岐にわたっており、まだ完全には解明されていません(2)。ポリアミンは多すぎても少なすぎても生物が生きていく上で障害になるので、ODCの活性は厳密に制御されなければなりません。余談ですが、そういう意味ではオルニチンをサプリメントとして摂取するのは、体に負担をかけることになるのではないかと危惧されます。

そこで登場するのがODCアンチザイムという制御因子で、このタンパク質がODCに結合することによって、ODCは迅速に分解されます(図1、参照3)。結合状態での分子形態なども報告されています(4)。ODCアンチザイム自身がODCを分解するわけではなく、あくまでもODCの形態(コンフォメーション)を変化させて、タンパク質分解酵素が見つけやすいターゲットにするということです。アンチザイム自身は分解されないので、再利用されます。

 

A_7

アンチザイムとは違うアロステリックモデュレーターとして機能する因子にもふれておきましょう。図2のように細胞膜を何度も貫通するタンパク質は数多く存在しますが、それらは外界からのシグナル(例えばホルモン)を受けて、分子形態が変化し、細胞内に出ている部分を使って外界からきたシグナルを細胞内に反映させるべく仕事をします。このような機能を正方向(+)あるいは負方向(-)に導くためのタンパク質性制御因子が存在します(図2、参照5、6)。このような制御因子(アロステリックモデュレーター)は膜貫通タンパク質等に結合することによって、その構造を変化させ、機能に影響を与えます。

 

A_8


制御因子のなかにはDNAと結合して転写を制御しているものもあります。これらは通常転写因子(transcription factor)とよばれています。例えばbZipというタンパク質は、C末側でαヘリックスがロイシンなどを介して結合してダイマーを形成し、N末側ではキッチン用品のトングのようにDNAをはさんで転写を制御します(図3)。2本のαヘリックスがジッパーのように重なりあって結合している部位をロイシンジッパーといいます。

 

A_9

 

またZif268(またはEGR1)という転写因子は、分子内にジンクフィンガーという部位(図4A)を3ヶ所持っており、その特異な構造を使ってDNAに結合します(図4B)。ジンクフィンガーというのは名前の通り亜鉛原子を抱え込んだ構造で、図4Aでは2つのシステインと2つのヒスチジンが亜鉛原子と結合しています。2つのβシートと1つのαヘリックスを含んだ構造が亜鉛原子によって安定化されているようです(図4B 参照7)

 

A_10

 

ロイシンジッパータンパク質やジンクフィンガータンパク質は数多く存在し、またそれぞれがさまざまな遺伝子を発現させるために必要なので、機能によって分類や命名ができないため、酵素などと違って暗号のような名前になっています。タンパク質分子をいくつかの領域に分けて、それぞれをドメインとよぶことがあります。その場合ロイシンジッパードメインとかジンクフィンガードメインなどとよばれます。

もうひとつ、bHLH(basic helix-loop-helix)というドメイン(図5A)をもつ転写因子について述べておきます。このドメインは図5Aのように、2つの短いαヘリックスがループ状の構造でつながっています。このグループを代表する転写因子はMyoDです。MyoDはE12という別の転写因子とヘテロダイマーを形成して2本足のような構造をつくり、塩基性アミノ酸を使ってDNAと結合します(図5B)。

 

A_11

 

MyoDは R.L. Davis らが発見した元締め的転写因子で、筋肉形成という極めて複雑なプロセスにゴーサインを出すマスター制御因子とされています(8、9)。発生の途中で未分化細胞を筋細胞に分化させるだけでなく、例えば筋トレをしたときもこれが発現して筋肉が増強されると考えられています。将来工場で細胞を分化させて食糧を製造するというようなことがあるとすれば、MyoDはキーファクターとして使われるかもしれません。

転写因子にはこれらの他にも非常に多くの種類があり、きりがありませんが、細胞がそれぞれ特徴を出すためにどの道を行くか決めるハンドルのようなものです。ノーベル賞の山中4因子(Oct3/4、Sox2、Klf4、c-Myc)もすべて転写因子です(10)。これらはいったん来た道を逆行して元に戻るプログラムを進行させる因子とも言えます。

最初に 「制御因子他」 と書きましたが、「他」 というのは例えばヘモグロビンです(図6)。ヘモグロビンは(グロビン+ヘム)x4(テトラマー)で構成されるタンパク質で、モノマーのグロビンも含めると真核生物のみならず、酸素を利用する生物には細菌も含めて広範囲に分布しています(11)。このタンパク質は酵素でも、構造タンパク質でも、制御因子でもなく、酸素や二酸化炭素を運搬する担体として使われています。

 

A_12

 

そのほかにもリボソームというタンパク質製造マシーンではRNAと共に100種類近いタンパク質が、そのパーツとして働いています。メッセンジャ-RNAを製造する工場であるスプライソソームでも多くのタンパク質がそれぞれ役割を果たしています。すなわち酵素・構造タンパク質・制御因子以外にも重要な役割を担っているタンパク質は数多く存在します。

 

参照

1)https://morph.way-nifty.com/grey/2016/05/post-8705.html

2)栗原新、ポリアミンのとても多彩な機能、生物工学会誌 vol.89,p.555 (2011)
https://www.sbj.or.jp/wp-content/uploads/file/sbj/8909/8909_biomedia_3.pdf

3)村上安子, 松藤千弥、迅速なポリアミン制御を可能にするオルニチン脱炭酸酵素の分解系、化学と生物 Vol. 39, No. 3, pp.171-176 (2001)・・・アンチザイム
https://www.jstage.jst.go.jp/article/kagakutoseibutsu1962/39/3/39_3_171/_pdf

4)Hsiang-Yi Wu et al., Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc Natl Acad Sci USA, vol. 112 no. 36, pp. 11229–11234 (2015)
http://www.pnas.org/content/112/36/11229.full.pdf

5)Lauren T. May, Katie Leach, Patrick M. Sexton, and Arthur Christopoulos, Allosteric Modulation of G Protein-Coupled Receptors
Annual Review of Pharmacology and Toxicology  Vol. 47, pp. 1-51 (Volume publication date 10 February 2007)
http://www.annualreviews.org/doi/10.1146/annurev.pharmtox.47.120505.105159

6)J.N. Kew, Positive and negative allosteric modulation of metabotropic glutamate receptors: emerging therapeutic potential., Pharmacol Ther. vol.104(3), pp. 233-244 (2004)
https://www.ncbi.nlm.nih.gov/pubmed/15556676

7)https://ja.wikipedia.org/wiki/%E3%82%B8%E3%83%B3%E3%82%A%E3%83%95%E3%82%A3%E3%83%B3%E3%82%AC%E3%83%BC

8)Robert L. Davis, Harold Weintraub, Andrew B. Lassa, Expression of a single transfected cDNA converts fibroblasts to myoblasts.
Cell, Vol.51, Issue 6, pp. 987–1000 (1987)

9)Ma, P.C.,Rould, M.A.,Weintraub, H.,Pabo, C.O.Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell vol.77, pp. 451-459 (1994)

10)iPSビズ ヤマナカファクターとは http://ips 細胞.biz/dic/30.html

11)https://ja.wikipedia.org/wiki/%E3%83%98%E3%83%A2%E3%82%B0%E3%83%AD%E3%83%93%E3%83%B3

|

« 2017年2月 | トップページ | 2017年4月 »