続・生物学茶話267:視床と大脳皮質2
Edward G. Jones は2007年に出版した「The Thalamus」という本(私は未読)の中で 「All cortical areas receive thalamocortical projections from specific thalamic nuclei」(大脳皮質のすべての領域は、それぞれ特異的な視床の神経核からの投射を受けている)と書いているそうです(1)。 視床から大脳皮質への投射が意識そのものなのかどうかはわかりません。もしそうならコンピュータだって意識を持っているということになるので、それは違うのではないでしょうか。意識を持つということは記憶との照合などもう少し高次のメカニズムが必要なのでしょう。また視床と大脳皮質の連絡は一方通行ではなく相互的なものであり、意識に基づく行動は大脳皮質から視床への投射によります。このネットワークがどのように成立するのかは意識を持つ生命体にとっては核心的に重要です。
どのような細胞、どのような因子が軸索の伸長とターゲットへの接近をサポートしているかという問題は、無脊椎動物では案内する細胞を個別に破壊するという手法で確かめられていますが(2)、哺乳類の胚でそのような実験を行うことは技術的に困難です。哺乳類では発生過程で脳のネットワークを形成する段階で、大脳皮質領域から視床に向かって伸びるニューロンが、視床から大脳皮質へ延びるニューロンの道案内細胞となるという仮説(ハンドシェイク仮説)は古くからありました(3、4、図267-1)。これは大脳皮質から伸びる軸索と視床から伸びる軸索が、例えばマウスの場合胎生13~14日目に中間点で邂逅するという解剖学的・形態学的な知見に基づいています。これに失敗した場合正常なマウスは生まれません。
PC・テレビ・無線通信・有線電話などでネットワーク通信を行う場合、情報が片方向にしか流れない場合と双方向に流れる場合があります。ケーブルにも片方向用と双方向用があります。私たちの場合、腸神経系以外では多分ほとんどの神経は片方向用にできています。しかし視床と大脳皮質のように起床時には常時大容量の双方向通信を行っているネットワークでは、ハンドシェイクによって形成された双方向ケーブルによって、事実上有線電話のような常時性双方向通信ができることは合理的です。
図267-1 ハンドシェイク仮説
ハンドシェイク仮説は興味深い仮説ですが、それを証明したのは提唱者であるオックスフォード大学のグループではなく、エジンバラ大学のグループでした。Chen らはAPCというニューロンが分化する際に必要な因子のコンディショナル・ノックアウトマウスを用いて、視床から伸びる軸索が大脳皮質に到達するためには、大脳皮質のニューロンの助力が必要だということを証明しました(5)。
彼らは大脳皮質のニューロンだけが軸索進展に必要なAPC遺伝子を失うというノックアウトマウスでは、胎生15.5日目においても視床ニューロンの軸索がPSPB(pallial-subpallial boundary=外套‐外套下部境界、すなわち将来大脳皮質などになる部分と基底核などになる部分との境界)を乗り越えることができないことを見出しました(5、図267-2B、D)。大脳皮質周辺から遠隔の細胞に届くような誘導物質は放出されていないことも証明していたので、視床ニューロンの軸索がPSPBを乗り越えるためには大脳皮質からのびてくるニューロン軸索の助力が必要であることが示唆されています(5)。
ノックアウトマウスの予定大脳皮質領域を取り除き、正常マウスの予定大脳皮質領域を移植すると、視床ニューロンの軸索はPSPBを乗り越えられることもわかりました(5、図267-3)。大脳皮質および視床由来の軸索が伸びる領域には多くの誘導物質がそれぞれの濃度勾配を持って配置されており、基本的にそれらに導かれて軸索は伸びるものと思われますが、PSPBを乗り越えるメカニズムについてMolnarらは誘導物質というより、大脳皮質由来のニューロンが視床由来の軸索のバンドリング(束を作る)に必要な物質を供給するのだろうと述べています(6)。PSPB付近は胎生2週間にはグリア細胞が緻密に存在しており、これらをかき分けて伸びるにはバンドリングが必要なのかもしれません。
図267-3 ミュータント大脳皮質に正常大脳皮質を移植すると、視床神経軸索はPSPBを突破できる
Molnar と Kwan は最近の総説(6)で大脳皮質‐視床ネットワーク構築に関する知見のリニューアルをおこなっています。彼らのまとめによると誘導因子のなかには欠損すると、Tbr1, Mash1, Pax6, Gbx2:大脳皮質→視床、視床→大脳皮質の双方向に伸びる軸索がともに迷子になって進めなくなる、Nkx2.1:視床→大脳皮質は到達するが大脳皮質→視床は迷子になるものがある、Ebf1:大脳皮質→視床は到達するが視床→大脳皮質は迷子になるものがある、Emx2:到達できるが経路が異なる、Dix1:到達できないばかりか大脳皮質からの軸索は消失してしまう、などさまざまな場合が示されています(図267-4、図267-5)。
図267-4 誘導因子の影響1
図267-5 誘導因子の影響2
特に興味深いのは Doyle らの研究結果(7)で、彼らはArid1aというクロマチンモデリング複合体の構成成分であるタンパク質の遺伝子のコンディショナルノックアウトマウスを作成し、大脳皮質-視床のネットワーク構築過程を調べたところ、この遺伝子の欠損によって特に視床→大脳皮質の軸索のバンドリングができなくなり、ハンドシェイクが成立しなくなることがわかりました。そしてハンドシェイクが成立しないと、特に視床から伸びてきた軸索はPSPBを乗り越えることがほとんどできません(図267-6)。
この動物は視床の細胞の Arid1a は正常なのですから、正常な視床ニューロン軸索の動向が、別の細胞である大脳皮質ニューロンだけに現れるクロマチン構造の変異の影響を強く受けるということになります。
図267-6 Arid1a のコンディショナルノックアウトマウス(大脳皮質ニューロンでの変異)ではハンドシェイクが成立しない
参照
1)Edward G. Jones「The Thalamus」2nd Ed., (2007) Cambridge University Press
2)Bentley D, Caudy M (1983) Pioneer axons lose directed growth after selective
killing of guidepost cells. Nature vol.304: pp.62-65 (1983)
https://pubmed.ncbi.nlm.nih.gov/6866090/
3)Molnar Z, Blakemore C, Lack of regional specificity for connections formed between thalamus and cortex in coculture. Nature vol.351: pp.475–477. (1991)
https://www.nature.com/articles/351475a0
4)Zoltan Molnar, Richard Adams, Andre M. Goffinet, and Colin Blakemore, The Role of the First Postmitotic Cortical Cells in the Development of Thalamocortical Innervation in the Reeler Mouse., The Journal of Neuroscience, vol.18(15): pp.5746–5765 (1998)
doi: 10.1523/JNEUROSCI.18-15-05746.1998
https://pmc.ncbi.nlm.nih.gov/articles/PMC6793036/
5)Yijing Chen, Dario Magnani, Thomas Theil, Thomas Pratt, David J. Price, Evidence That Descending Cortical Axons Are Essential for Thalamocortical Axons to Cross the Pallial-Subpallial Boundary in the Embryonic Forebrain, PLoS ONE 7(3): e33105. (2012)
https://doi.org/10.1371/journal.pone.0033105
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0033105
6)Zoltán Molnár and Kenneth Y. Kwan, Development and Evolution of Thalamocortical Connectivity, Cold Spring Harb Perspect Biol, vol.16, no.1, a041503.
DOI: 10.1101/cshperspect.a041503
https://pubmed.ncbi.nlm.nih.gov/38167425/
7)Doyle DZ, Lam MM, Qalieh A, Qalieh Y, Sorel A, Funk OH, Kwan KY., Chromatin remodeler Arid1a regulates subplate neuron identity and wiring of cortical connectivity.,
Proc. Natl. Acad. Sci. USA Vol. 118 | No. 21 e2100686118 (2021)
https://doi.org/10.1073/pnas.2100686118
https://www.pnas.org/doi/10.1073/pnas.2100686118
最近のコメント