« フルシャ-都響 マーラー交響曲第1番@東京芸術劇場2016年12月13日 | トップページ | サラとミーナ182: 私の毛布の上が常宿となる »

2016年12月16日 (金)

やぶにらみ生物論52: 転写1

No.46:リボソームですでに述べたように、1960年頃にはすでにリボソームがタンパク質の製造工場であることはコンセンサスになっていました。トランスファーRNA(tRNA)の役割もわかってきていました。すなわちリボソームに存在するRNAの情報に基づいて、アンチコドンを持ちアミノ酸を運ぶ tRNAが、順次リボソームにアクセスすることによって、タンパク質が合成されることになります。

しかし当初リボソームが持つRNAは、それぞれのリボソームに特異的であり、そのリボソームがそれぞれ別々のタンパク質を合成するという考え方が一般的でした。ですからこの頃にはまだメッセンジャーRNA(mRNA)という概念はありませんでした。44:メッセンジャーRNAで、ブレナー・ジャコブ・メセルソンがDNAからリボソームに情報を運ぶ不安定なRNAが存在することを示唆する研究を行ったことを述べましたが、この1961年の研究を出発点としてDNAからmRNAを合成するメカニズムの研究が進展しました。DNAを鋳型としてmRNAが合成されるプロセスを転写(transcription) といいます。

ただ彼らの実験でmRNAの構造と機能が明らかになったわけではなく、あくまでもこれは端緒にすぎません。マシュー・コブ は「誰がmRNAを発見したのか?」という科学エッセイを発表していますが(1)、どうも明快な結論はないようです。ニレンバーグとレダーは大腸菌の無細胞系(大腸菌をすりつぶした抽出液)に、ポリUを入れるとフェニルアラニンがタンパク質にとりこまれることを証明しましたが、このポリUはまさしくmRNAなわけで、ニレンバーグとレダーが発見者という見方もできます。

また後にニレンバーグとマタイは大腸菌の無細胞系にさまざまなポリリボヌクレオチドを投入して、タンパク質合成がこれらのポリリボヌクレオチドに依存していることをみています(2)。コブはブレナーらの実験と共にこの仕事を重視しています。

Aleder_phil_3アヴィヴとレダーの実験も完成品の美しさがあります。彼らはうさぎのグロビン(ヘモグロビンを構成するタンパク質)のmRNAをオリゴdTセルロース法という方法を使って精製し、がん細胞をすりつぶした抽出液の無細胞系で、うさぎのグロビンを合成することに成功しています(3)。

大腸菌の無細胞系とファージを使った実験というのはユニバーサリティに欠けると思います。ファージは生物ではありませんしね。グロビンmRNAの実験を行ったフィリップ・レダー(図1、1934~)は、ニレンバーグと共にコドンの最初の解読者であり、mRNAの機能を確定し、グロビンの遺伝子が分断されていることをも発見した(4)という卓越した業績の研究者であるにもかかわらず、ノーベル賞は授与されていません。遺伝子の分断の件でも。ファージのグループが受賞して彼ははずされました。全く理不尽なことだと思います。

リボソームRNA(rRNA)やトランスファーRNA(tRNA)が安定な物質であるのに対して、メッセンジャーRNA(mRNA)は壊れやすい不安定な物質です。rRNA・tRNAはハウスキーピングないつも必要なものであるのに対して、mRNAは必要なときだけにあればよいものだという意味で、この違いは合理的です。たとえばラクトースが周りに豊富にあるときには、大腸菌はラクトース分解系のタンパク質をコードするmRNAが必要ですが、ラクトースがなくなれば必要ありません。ジャコブとモノーは、リプレッサーが通常はオペレーター領域に結合していて、ラクトースの存在によってリプレッサーとDNAの結合が解かれ、RNA合成がはじまることを示しましたが、これは最も単純な例であって、実際のRNA合成の制御機構ははるかに複雑を極めるものです。

DNAを複製するのはDNAポリメラーゼであるのに対して、DNAを鋳型としてRNAを合成するのがRNAポリメラーゼです。DNAポリメラーゼが dATP, dTTP, dGTP, dCTP を基質とするのに対して、RNAポリメラーゼは ATP, UTP, GTP, CTP を基質とします。DNAポリメラーゼが 3'OH を起点として必要とするのに対して、RNAポリメラーゼは必要としません。ですからRNAポリメラーゼはRNA合成をはじめる基点を他の因子に決めてもらう必要があります。DNAポリメラーゼには多くの種類がありますが、RNAポリメラーゼは特殊なものを除いて細菌では1種類、真核生物では3種類しかありません。真核生物の3種類とそれぞれの役割は、RNAポリメラーゼ I:rRNAの合成、RNAポリメラーゼII:mRNAの合成、RNAポリメラーゼIII:tRNAと一部のrRNAの合成となっていて、さまざまなRNAを分業で合成しています。

まず大腸菌のRNAポリメラーゼについてみていきましょう(図2)。RNAポリメラーゼのコア酵素は5つのサブユニット(α、α、β、β’、ω)からなり、転写を開始する際にはσ因子が結合してホロ酵素の状態になります。σ因子が転写を開始する位置を指定します。細菌の場合、転写を開始する位置から上流側(鋳型鎖の3’側)に10ヌクレオチドおよび35ヌクレオチドあたりにσ因子と親和性の高い塩基配列(プロモーター配列)があり、σ因子はこのふたつのサイト周辺の塩基配列を認識してDNAと結合し、RNAポリメラーゼが転写を始める位置を指定します。このふたつのプロモーターサイトは-35領域、-10領域と呼ばれます。

D



プロモーター配列は厳密に決まっているわけではなく、一例を挙げれば TGTTGACA(-35領域)、TATAAT(-10領域)などがあります。これらにσ因子が結合することによってRNAポリメラーゼと隣接DNAの立体構造が変化して、閉じられていたDNAの2重鎖が開いて、鋳型鎖の情報をRNAポリメラーゼが読み取ることができる状況になります。そしてRNAポリメラーゼは+1の位置から転写を開始します(図3)。もちろんこのときリプレッサーはDNAからはずれていなければなりません。

A_5

大腸菌は7種類のσ因子を持っていることが知られており、分子量に応じて分類されています(例えば分子量約7万のものはσ70)。
σ19、σ24、σ28、σ32,σ38、σ54、σ70のうち、通常はσ70が使われています。σ28は鞭毛専用。ヒートショックを受けた場合はσ24・σ32、飢餓の場合はσ38など用途や状況によって使い分けているようです(5)。それぞれのσ因子によって、当然親和性の高いDNA塩基配列も異なります。単細胞の細菌でも7種類の転写部位を指定する因子があるわけですが、真核生物の場合このような細菌のやり方を拡張し、非常に複雑な転写指定を行うことによって細胞の多彩なニーズに対応するように進化しました。これについては後程述べます。

σ因子のはららきで転写を開始したRNAポリメラーゼですが、では転写を終結する位置はどのように指定されているのでしょうか? これには2つの方法があって、ρ因子依存性と非依存性と呼ばれています(6)。ρ因子は図4Aのように6個のρタンパク質がドーナツのように集合した因子で、Cが多い rut site という配列を認識してDNAに結合し転写を終結させます。ただし詳しいメカニズムはわかっていないようです。ρ因子非依存性の終結メカニズムは、転写されたmRNAがヘアピンのような構造をとることがポイントです。このような部分的二重鎖をつくるために、DNAおよびmRNAの一部に回文構造(パリンドローム)が形成されています。回文とは「竹藪焼けた」のように前から読んでも後ろから読んでも同じと言う文章ですが、塩基配列でこのようになっている部分(図4B赤線)がなっていない部分を挟んで存在すると、図4B右側の図のようにヘアピン構造を形成します。

A_6

ヘアピン構造のあとにUUUUUUUUという配列がありますが、このような場合DNAとmRNAの親和性が弱いことがわかっており、転写終結後、mRNAがDNAから離れるために有効であると考えられています。ここで述べてきたのは細菌の転写機構のお話です。真核生物については次の稿で。

参照:

1) Matthew Cobb, Who discovered messenger RNA?,  Current Biology 25, R523-R532 (2015)

2) M.W. Nirenberg  and J.H. Matthaei, The dependence of cell-free protein synthesis in E. Coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA vol.47, pp.1588-1602 (1961)

3) H. Aviv and P. Leder, Purification of biologically active globin messenger RNA by chromatography of oligothymidylic acid-cellulose. Proc Natl Acad Sci USA vol.69, pp.1408-1412 (1972)

4)Konkel DA, Tilghman SM, Leder P. The sequence of the chromosomal mouse β-globin major gene: Homologies in capping, splicingand poly(A) sites. Cell vol.15: pp. 1125–1132. (1978)

5) https://en.wikipedia.org/wiki/Sigma_factor

6) J.D. Watson et al. Molecular Biology of the Gene 6th edn. pp.394-395 (2008)

 

 

| |

« フルシャ-都響 マーラー交響曲第1番@東京芸術劇場2016年12月13日 | トップページ | サラとミーナ182: 私の毛布の上が常宿となる »

生物学・科学(biology/science)」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)


コメントは記事投稿者が公開するまで表示されません。



トラックバック


この記事へのトラックバック一覧です: やぶにらみ生物論52: 転写1:

« フルシャ-都響 マーラー交響曲第1番@東京芸術劇場2016年12月13日 | トップページ | サラとミーナ182: 私の毛布の上が常宿となる »