100.初期発生と情報伝達 Ⅱ
遺伝子発現と初期発生現象のかかわりを研究する上で、遺伝学の研究でよく使われるショウジョウバエやマウスには若干不都合な事情があります。ショウジョウバエの場合、初期発生は表割という特殊な様式で行なわれるので(1)、両生類・魚類・爬虫類・鳥類・哺乳類で構成されるグループとの関連性がつかみにくいという問題があります。マウスのような哺乳類の場合、発生は母親の用意した環境(子宮)で行なわれるので、初期発生が物質の濃度勾配による影響などを含めて母体環境に依存したメカニズムで進展する可能性があります。ショウジョウバエの場合も発生はナース細胞によってサポートされています。
この点両生類は卵割で形成された割球のすべてがその個体の細胞になること、外界に産み落とされるので分化はすべて自前のプログラムで行なわれること、シュペーマンが使った材料であり、オーガナイザーの分子生物学による説明の素材として適していることなど、実験動物として適している点が多いと思われます。特にアフリカツメガエルは肺を持ちながら陸上では生活しない、すなわち水槽だけで飼育できるという利点があるので良く用いられます(図100-1)。
図100-1 アフリカツメガエルとその卵
すでに体軸形成のセクションで述べたように、カエルの原腸陥入の位置にはβ-カテニンが局在し、Wntシグナルの標準型経路(キャノニカル・パスウェイ)が関与していると思われます(2、図100-1)。最近の研究ではキャノニカル・パスウェイとノンキャノニカル・パスウェイ(3)は、細胞膜における第2受容体の違いでは識別できるものの、細胞内の錯綜した生化学経路のなかでお互いに干渉し合っており、簡単には分離できないことが判明しています(4、図100-2)。
図100-2 初期発生とWnt経路
そういう複雑さは前提となりますが、Wnt経路と発生との関連についてはクー(Ku)とメルトン(Melton)がツメガエルの成熟した卵母細胞において、Wnt11のmRNAが植物極側のコーテックス(細胞膜のすぐ内側の細胞質)に局在していることを、すでに20世紀に発見していました(5)。Wnt11のmRNAはその後陥入が起こる背側帯域(dorsal marginal zone) に高濃度で局在します(5)。 彼らはWnt11はノンキャノニカル・パスウェイを介して発生を制御していると考えていました。
しかしヒースマン研のコフロンらは2001年に、β-カテニン分解複合体の構成因子である母親由来のアキシンを欠く胚では、β-カテニンが安定化されて胚の過剰の背側化( dorsalization )がおこり、過大な脊索や頭部の構造、縮退した尾や腹部が形成されることを明らかにしました(6、図100-3)。このことは腹背の決定にキャノニカル・パスウェイが関与していることを意味します。
ツメガエルWnt11についての研究は、その後ヒースマンの研究室で大きく進展しました。中心となって研究を進めたのはタオとヨコタです(7、図100-4)。彼らは成熟した卵母細胞にWnt11のアンチセンスオリゴマーを投与して、Wnt11 mRNAのレベルを20%まで下げ、このような胚は腹側に偏った発生を行ない、神経褶が形成されないことを証明しました。このような胚に Wnt11 mRNA を注入すると背側化が部分的に再促進されることもわかりました。彼らはさらにWnt過剰発現は 背側化転写因子である siamois や Xnr3 の発現をβ-カテニンに依存して促進することや、卵割の途中で細胞膜直下のコーテックスに局在していたWnt11のmRNAが細胞質に広がっていくことを確認しました(7)。
図100-3 β-カテニン分解複合体の構成因子である母親由来のアキシンを欠く胚では、β-カテニンが安定化されて胚の過剰の背側化がおこる
図100-4 Wnt11による背側化を証明した研究者達
2016年にようやくアフリカツメガエルの全ゲノム解析結果が発表されました(8)。これによってトランスクリプト-ム解析が可能となり、シュペーマンオーガナイザーの分子的実体についての全容が明らかになる日も近いと思われます。初期胚は形態形成という1点をめざした細胞集合体とも考えられるので、母親由来のmRNAのプロファイリングと共に、特にトランスクリプト-ム解析を綿密に行なうことがメカニズム解明のために有効だと思われます。
トランスクリプト-ム解析などによって ディ・ロバーティス(de Robertis)のチームが明らかにしたことの一部を図100-5に示します。彼らの図式によれば、シュペーマンオーガナイザーを構成する多くの因子は、母親Wntシグナル → β - カテニン → Siamois(シャム)の下流にあることになっています。詳しくは文献(9)を参照して下さい。もちろんこの仕事によってシュペーマンオーガナイザーのすべてが明らかになったわけではなく、今後の進展に期待したいところです。
図100-5 Wntシグナルからシュペーマンオーガナイザーへの道
STAP細胞の件で自殺した笹井芳樹は、ディ・ロバーティス(de Robertis)の研究室でアフリカツメガエルを使って、シュペーマンオーガナイザーの構成分子のひとつである コーディン(chordin)の研究をしていました(10)。ご冥福をお祈りします。
先日平良眞規先生の退官記念シンポジウムに行ってきました。三井らもWntシグナルは重視しているようでしたが、ノンキャノニカルシグナルに重点を置いて研究されているように思いました。Wntが N-sulfo-rich へパラン硫酸に結合しているという知見は斬新です(11)。哺乳類においてもWntシグナル、特にキャノニカルパスウェイが初期発生において重要な役割を果たしていることは証明されています(12)。
参照
1.卵割 自宅で学ぶ高校生物
http://manabu-biology.com/archives/42123775.html
2.生物学茶話@渋めのダージリンはいかが97: 体軸形成
http://morph.way-nifty.com/lecture/2017/12/post-1408.html
3.生物学茶話@渋めのダージリンはいかが99: 初期発生と情報伝達1
http://morph.way-nifty.com/lecture/2018/01/post-8af9.html
4.F.Fagotto, Wnt signaling during early Xenopus development. in "Xenopus development" ed., M. Kloc and J.Z.Kubiak., John Wiley & Sons Inc., (2014)
5.Ku M and Melton DA, Xwnt-11: a maternally expressed Xenopus wnt gene., Development. vol.119 (4): pp. 1161-1173 (1993).
http://www.xenbase.org/literature/article.do?method=display&articleId=21903
6.Kofron M1, Klein P, Zhang F, Houston DW, Schaible K, Wylie C, Heasman J., The role of maternal axin in patterning the Xenopus embryo., Dev Biol. vol. 237(1): pp. 183-201 (2001)
https://www.ncbi.nlm.nih.gov/pubmed/11518515
7.Qinghua Tao, Chika Yokota (same contribution) et al., Maternal Wnt11 Activates the Canonical Wnt Signaling Pathway Required for Axis Formation in Xenopus Embryos., Cell, Vol. 120, pp. 857–871, (2005)
https://www.ncbi.nlm.nih.gov/pubmed/15797385
8.Adam M. Session et al., Genome evolution in the allotetraploid frog Xenopus laevis., Nature volume 538, pages 336–343 (2016) doi:10.1038/nature19840
https://www.nature.com/articles/nature19840
9.Yi Ding, Diego Ploper (same contribution), Eric A. Sosa, Gabriele Colozza, Yuki Moriyama, Maria D. J. Benitez,
Kelvin Zhang, Daria Merkurjevc, and Edward M. De Robertis, Spemann organizer transcriptome induction by earlybeta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., PNAS April 11, 2017. 114 (15) E3081-E3090 (2017)
http://www.pnas.org/content/114/15/E3081.long
10.Yoshiki Sasai, Bin Lu, Herbert Steinbeisser, Douglas Geissert, Linda K. Gont, and Eddy M. De Robertis., Xenopus chordin: A Novel Dorsalizing Factor Activated by Organizer-Specific Homeobox Genes.,
Cell. vol. 79 (5): pp. 779–790 (1994)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3082463/
11.Mii Y, Yamamoto T, Takada R, Mizumoto S, Matsuyama M, Yamada S, Takada S, Taira M.Roles of two types of heparan sulfate clusters in Wnt distribution and signaling in Xenopus.
Nat Commun. vol. 8(1):1973. doi: 10.1038/s41467-017-02076-0. (2017)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719454/
12.Jianbo Wang, Tanvi Sinha, and Anthony Wynshaw-Boris, Wnt Signaling in Mammalian Development:
Lessons from Mouse Genetics., Cold Spring Harb Perspect Biol vol.4, no.5 :a007963 (2012)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3331704/
| 固定リンク
コメント