« 2017年7月 | トップページ | 2017年9月 »

2017年8月25日 (金)

生物学茶話@渋めのダージリンはいかが84: DNA塩基配の解読

フレデリック・サンガーという人(図1)の偉大さは驚異的です。なにしろ生物の主成分である核酸とタンパク質の構成単位(ヌクレオチドとアミノ酸)がどのように配列しているか解析する方法を、両方とも開発したわけですから。彼はまずタンパク質を構成するアミノ酸の配列を解析する手法を開発し、1953年にインシュリンの全一次構造を明らかにして、1958年度のノーベル化学賞を受賞しています。

さらに彼の研究グループは、1977年にジデオキシ法によるDNAの塩基配列解析に成功し(1)、この業績によってサンガーは1980年に2度目のノーベル化学賞を受賞しました。同じ分野のノーベル賞を2回受賞した人は彼以外にはジョン・バーディーン(トランジスタの発明と超伝導理論で2回物理学賞を受賞)しかいませんし、他にノーベル賞を2回受賞した人はマリ・キュリー(物理学賞と化学賞)とライナス・ポーリング(化学賞と平和賞)のみです。

 

A

 

ジデオキシ法のミソは、通常デオキシリボース5員環の2の位置はHで、3の位置はOHのデオキシヌクレオチジル3リン酸(dNTP)ですが、その3の位置のOHをHに置換したジデオキシヌクレオチジル3リン酸(ddNTP、図2)を、DNA合成の基質に紛れ込ませることにあります。これまでにも何度も述べているように3の位置にOHがないと、DNAポリメラーゼは鎖を延長できません。したがって運悪くddNTPを取り込んだ場合、DNA合成はそこで停止します。

 

A_2

 

ここでdATPにddATP(dideoxy ATP)を紛れ込ませたとしましょう。他の3種のデオキシヌクレオチドdTTP、dGTP、dCTPは純粋品でdd型を含みません。そうするとdATPのかわりに、運悪くddATPを取り込んだ場合にだけDNA合成が停止します。従って停止した位置の対面にある鋳型の塩基はTということになります。図3の場合、3、9、15番目の位置で停止するのでその位置の鋳型DNAの塩基がTであることがわかります。反応を途中で停止した3種の短いDNA(左端が3’H)は、電気泳動法などによってサイズで識別します。

 

A_3

 

新生DNAのサイズを識別するには、鋳型DNAと新生DNAを分離しなければなりません。これにはいくつか方法がありますが、図4のように尿素などを添加して2本鎖のDNAを結びつけている水素結合を引きはがすのが一般的な方法です。尿素は塩基と塩基同士より強力な水素結合をつくることによって、塩基同士の水素結合形成を妨害します。

 

A_4

 

高濃度の尿素の存在下で図5のように通電して、DNA断片をポリアクリルアミドゲルの中に誘導すると、ポリアクリルアミドの架橋した立体構造の中で動きにくい高分子のDNA断片は遅く、動きやすい低分子の断片は早く移動し、図3の右図のように分離することができ、かつレファレンスと同時に泳動することによって分子量(鎖長)も決定できます(2、3)。DNAは酸性(マイナスチャージ)なので、電流とは逆方向に移動することになります。

 

A_5

 

塩基配列決定を効率的に行うための技術開発は現在に至るまで活発に行われていますが、そのきっかけになったのはジデオキシヌクレオチドを蛍光物質で標識しておくという技術です。この技術を開発したのは誰なのかということに興味を持って少し調べましたが、ちょっと複雑な経緯があるので最後に述べます。実際にはサーモフィッシャーという会社で売っている Big Dye(4)などを使ってシーケンシングは実行されています。

4種のddNTPをそれぞれ別の蛍光色素で標識しておくと、同時にひとつの試験管で反応させても、色つきの生成物を分析すれば一挙に塩基配列が可能となります。さらに図6のようなオートメーションを使えば、簡単に塩基配列のチャートが入手できます。

 

A_6

 

サンガー法ではDNAポリメラーゼという酵素を使うので、それなりの不安定性やエラーがあります。マクサム・ギルバート法では化学的に特定の塩基の部分でDNAを切断します。この方が安定性は高いのですが、たとえばギ酸を使用した場合、GとAの両方の塩基で切断されるなど特異性に問題がある(図7)ほか、使用する試薬はすべてDNAを切断する作用を持つ危険な化合物なので、現在ではマクサム・ギルバート法はほとんど使用されていません。

しかしこの方法を開発したウォルター・ギルバートは、フレデリック・サンガーと共に1980にノーベル化学賞を受賞しています。テクノロジーで授賞すると、それより便利なテクノロジーが出現した途端に使われなくなり忘れ去られるというリスクがありますが、ギルバートの場合もそれに近いような状況です。アラン・マクサムに至っては写真もみつかりませんでした。

 

A_7

 

ジア・グオはサンガー法をさらに発展させました。彼はddNTPにとりはずしのできる蛍光色素を結合させ、さらに3’OHも付け外しができるようなシステムを開発しました(5、図8)。反応開始後最初に結合したddNTPを同定し、色を確認してから蛍光色素をとりはずして、さらに3’Hを3’OHにして次の反応を行うというプロセスを繰り返すことによって、理論的には無限の長さのDNAシーケンシングをオートメーションで行うことが可能となりました。

 

A_8

 

もうすこし具体的に書けば

1)DNAの断片を作成し、断片末端にアダプターを結合させる。
2)PCR法(後のセクションで述べる予定)で大量にDNA断片を複製したのち精製する。
3)DNA断片のアダプターを相補的配列を持つオリゴDNAで補足し、補足したDNAを増幅してクローンを作成する。
4)可変型蛍光標識ターミネータ(それぞれddNTPに代替する)4種を入れてフローセルでDNA合成を行わせる。
5)フローセル内でDNAクローンにとりこまれた最初のターミネータを蛍光励起法で同定する。
6)いったんDNA断片端の蛍光をはずし、3’OHを付けてDNA鎖を伸長させる。
7)4、5、6のステップを n回繰り返して、長さ n の断片のシーケンシングを実行する。
8)数百万個の断片を大量並列的に解析するので、高速でシーケンシングすることが可能になった。
9)各断片の塩基配列を、コンピュータを用いてアライメント(図9、後述)を行い、断片化する前の全DNAの配列を決定する。
10)DNAライブラリーごとに、別のアダプターを結合させておけば、3のステップでクローンごとにどのライブラリーのDNAか識別できるので、一気に複数のライブラリーのDNAを解析することが可能です。

ここでアライメントという言葉が出てきましたが、これはDNAシーケンシングで得られたDNA断片のデータをもとに、より長いDNAの塩基配列を決めるプロセスのことで、図9で説明しますと、5つのDNA断片セットをそれぞれサンガー法で解析して、より長い青色のDNAの全塩基配列が明らかになって、それをコンティグ1としますと、同様にコンティグ5までのデータを得て、それぞれの末端の配列を比較することによって各コンティグの並び方を決め、さらに長いDNAの配列を確定します。このような作業をアラインメントといいます。

 

A_9

 

シーケンシングの技術は日進月歩で、イルミナ社の「次世代シーケンステクノロジーのご紹介」というパンフレットをみると、図10のような進歩の歴史が書いてありました(6)。

 

A_10

 

新しい情報はオミックスクラブ(7)などで知ることができます。私が少し興味をひかれたのは、電子顕微鏡を用いたDNAシーケンシングで、この場合dNTPは重金属でラベルしておき、1本鎖DNAを視野にきれいに並べて、視野の広さ分の塩基配列を一気に読み取るというやり方です(8)。しかしサンプルを重ならないようきれいに並べるというのは、電子顕微鏡レベルでは非常に難しい技術で、成功寸前まで行きながら資金ショートで倒産した会社もあるようです。

ところでddNTPに4種の蛍光物質を結合させてシーケンシングを効率的に行うというアイデアはもともと伏見譲のアイデアで、1982年10月の第20回日本生物物理学会で発表されたそうです(9)。1983年に研究を実際に担当していた土屋政幸は修士論文を発表しました(9)。当然ネイチャーかサイエンスに発表すべき研究結果でしたが、伏見は十分な自信を持てないという理由でそれをしませんでした。それでも1983年に特許は申請しました。ところが1984年になって、当時の科学技術庁が「国から研究資金をもらっておいて、特許はないんじゃないですか」という横やりが入って、伏見は特許申請を取り下げるという、現在からみると驚くべき経緯があって、結局カリフォルニア工科大学のグループ(Mike Hunkapiller, Tim Hunkapillar, and Applied Biosystems)が1984年に申請した特許が結局最終的に有効となって、伏見は完敗となりました(10)。

この話はこれで終わりではなく、このアイデアは Hunkapillar 兄弟のものではなく自分のものだという同じ研究室にいた人物が現れたのです。それは Henry Huang という人で、裁判をおこしましたが敗北しました(10)。そういうわけで、4種の蛍光物質でddNTPをラベルしてシーケンシングするというアイデアは誰のものなのかは霧の中で、特許だけが厳然と残るという結果になりました。

私は基礎研究に多額の公的資金が投入されているのは事実なので、当時の科学技術庁の横やりはもっともだと思います。特許争いに大きなエネルギーをそそぐくらいなら、さっさと公表して誰でも使えるようにしたほうがよいと思いますし、国際社会が基礎科学の分野では特許至上主義から抜け出すべきだとも思います。研究者は研究資金とポストで処遇されるべきでしょう。

これに対する反論は、研究者といえども前に特許というニンジンをつるしたほうが、一生懸命走るという考え方に基づいています。それはそうかもしれませんが、上記の理由の他、特許獲得には大きなエネルギ-が必要ですし、ダークな側面がつきまとうということも事実です。

 

参照

1)F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors., Proc. Nati. Acad. Sci. USAVol.74, No.12, pp.5463-5467,(1977)
http://www.pnas.org/content/74/12/5463.full.pdf

2)Heike Summer, René Grämer, and Peter Dröge, Denaturing Urea Polyacrylamide Gel Electrophoresis (Urea PAGE).,  J Vis Exp.,  vol. 32., p. 1485. (2009)
doi:  10.3791/1485
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329804/

3)Denaturing Polyacrylamide/Urea Gel Electrophoresis
https://tools.thermofisher.com/content/sfs/manuals/MAN0011970_Denaturing_PolyacrylamideUrea_Gel_Electrophoresis_UG.pdf

4)https://www.thermofisher.com/order/catalog/product/4337455

5)Jia Guo et al, Four-color DNA sequencing with 3′-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides, Proc. Natl. Acad. Sci. USA,  vol. 105 (27), pp.9145-9150 (2008)
https://www.ncbi.nlm.nih.gov/pubmed/18591653

6)jp.illumina.com/technology/next-generation-sequencing.html

7)http://omics-club.blogspot.jp/

8)http://omics-club.blogspot.jp/2013/08/20130820.html

9)岸宣仁著 「ゲノム敗北 知財立国日本が危ない!」 ダイヤモンド社 (2004)
こちら

10)https://plaza.rakuten.co.jp/cozycoach/diary/200412260000/

 

|

2017年8月14日 (月)

生物学茶話@渋めのダージリンはいかが83: 制限酵素

細菌にとって最大の天敵はバクテリオファージ(ウィルス)です。この寄生体はホスト細菌の細胞壁にとりついて、注射器のようなツールでDNAを注入し、細菌のDNAにまぎれこませたり、あるいは直ちに細菌の中にある栄養物質を使って増殖し、殻もつくってホストを殺して外に出たりするわけです。

ベルタ-ニとワイグルはこの現象を研究しているうちに不思議な現象を発見しました(1、図1)。それは、ある系統の大腸菌(図1、斜線)で生育させたファージを取り出して、別系統の大腸菌(図1、ドット)に感染させると、斜線の大腸菌で生育したファージはドットの大腸菌に対する感染能を失っている場合があるということです(赤で示した!は感染能の喪失を示します)。すなわち大腸菌はP2やλファージの感染性を制御する能力を持っているということを意味します。彼らはこの現象が遺伝子の突然変異によるものではないことを示しましたが、そのメカニズムは解明できませんでした。他にもこの現象に気がついていた研究者もいましたが、誰もメカニズムを解明できませんでした(2)。

 

A

 

アルバー(図2)はジュネーヴ大学を卒業して、電子顕微鏡のオペレーターの仕事をしていましたが、そこからファージの研究に転身して、λファージを大腸菌に感染させる仕事をしていました。そしてλファージが大腸菌の中で、うまく増殖してくれないことに関心を持って研究を進めるうちに、λファージDNAを放射性のP(32P)でラベルして感染させると、大腸菌のなかでDNAが分解され、32Pは可溶性分画に出てくることがわかりました(3)。まさしく大腸菌の免疫機構が発動して、ファージを分解していたのです。

 

A_2

 

1960年代には、この免疫機構にS-アデノシルメチオニンが必要なことや、DNAのメチル化がかかわっていることがわかってきました。すなわち修飾がないとファージと同様にみずからの分解酵素でアタックされるはずの大腸菌DNAの切断部位が、メチル化されることによって切断を免れることが判明しました(4)。

ファージのDNAを分解する酵素を制限酵素 (ファージの増殖を制限するという意味 英語では restriction endonuclease) といい、DNAを保護するDNAメチラーゼとあわせて制限修飾系(R-Mシステム)ともいいます。

制限酵素を大腸菌から最初に精製したのはメセルソンとユアンでした(5)。この酵素はその後 I 型制限酵素と呼ばれ、DNA鎖上の特異的な塩基配列を認識しますが、DNAを切断する部位は認識部位から400~7000塩基(bp)も離れたところにあるので、遺伝子工学の研究者からは「使えない」酵素として忘れ去られました。大腸菌にしてみれば、自分のゲノムは切断されず、進入してきたファージDNAを切断してくれるわけですから、I 型でも十分用は足りているわけです。

I 型制限酵素はDNAを切断するRサブユニット2個、DNAをメチル化するMサブユニット2個、DNAの塩基配列を認識するSサブユニット1個の計5つのサブユニットからなり、同じ塩基配列を認識しても、ホストのDNAはメチル化し、ファージのDNAは切断するという複数の役割をひとつの分子が行なうことができます(6、図3)。Sサブユニットもふたつのドメインが逆向きに重なったような構造で、2本の αヘリックスからなるバーの両端に塩基配列認識部位があるので、離れた2ヶ所で塩基配列を認識します。非常に高度な機能を持った有能な酵素なのですが、I 型制限酵素は認識した塩基配列から離れた位置でDNAを切断する点、そしてメチラーゼ活性を持っているという点で遺伝子工学のツールとしては不適切でした。

 

A_3

 

ハミルトン・スミス(図2)は大学では数学を専攻していました。その後カリフォルニア大学、ジョンズ・ホプキンス大学と渡り歩いて医師になりました(7、8)。ところが彼はアルバーが制限酵素を発見したことに興味を持ち、ちょうど自分の研究室を持てることになったので、せっかく資格を得た医師の仕事を棄てて研究者になりました。アルバーが使った大腸菌とは異なるインフルエンザ菌(昔この菌がインフルエンザの病原体と考えられていた時期があり、その名残で名前が残っている)の制限酵素を調べてみました(8)。

実験材料だけ換えて追試するというのはバカにされがちですが、これも必要な研究ですし、ときには思いがけない重要な発見もあるのです。まさにハミルトン・スミスは彼の最初の学生だったケント・ウィルコックスと共に驚きの実験結果を得ました。

インフルエンザ菌の制限酵素はなんと認識した塩基配列を、その位置で切断したのです(9、図4)。この酵素は現在Hinc II(またはHind II) とよばれています。図4にみられるように Hinc II は1種類の塩基配列だけ認識するわけではなく、若干の幅があって、4種類の塩基配列を認識し、その中央でDNAを切断します。

II 型制限酵素は、I 型のようにATPやS-アデノシルメチオニンを必要とせず、マグネシウムイオンのみを要求する酵素反応を行います。またほとんどはDNAメチラーゼの活性をもっておらず、制限修飾系は別の分子であるDNAメチラーゼと協力して成立します。

 

A_4

 

ハミルトン・スミスの研究結果は燎原の火のように広がり、われもわれもと新しい制限酵素の発見競争がはじまりました。そのなかのひとりがダニエル・ネイサンズ(図2)でした。

彼はSV40というヒトやサルに感染するウィルスを研究していましたが、このウィルスのDNAをハミルトン・スミスの酵素で処理すると最大11個の断片に切断することができました(10)。これはDNAの塩基配列の研究に非常に有用であり、かつ塩基配列レベルでの遺伝子地図の作成が可能であることを示唆しました(図5)。

例えば図5で、あるDNAを制限酵素赤で切断して3つの断片A,B,Cが得られたとします。それだけでは各断片の塩基配列を解析してもABCの順番はわかりません。

しかし同じDNAを別の制限酵素青で切断して4つの断片が得られ、そのうちひとつの断片の左側(2’)が断片Aの右側(2)と一致し、右側(3’)が断片Bの左側(3)と一致すれば、断片Aは断片Bの左隣であることがわかります。同様に断片B、Cについても調べれば、BがCの左隣であることがわかり、制限酵素赤で切断した結果の3断片はABCの順に並んでいることがわかります。

 

A_5

 

アルバー、スミス、ネイサンズの3人(図2)は1978年にノーベル生理学医学賞を受賞しました(11)。その受賞理由は「for the discovery of restriction enzymes and their application to problems of molecular genetics」となっています。生理学医学賞で application to という言葉が使われたのははじめてです。すなわち生理学医学の領域においてもサイエンスのみならず、テクノロジーの分野における貢献もノーベル賞の対象になるということを、彼らは示しました。

さて、次々とみつかった II 型制限酵素を統一的に命名し整理することが必要になりました。スミスとネイサンズは1978年に命名法の基準を提案しましたが(12)、現在でもほぼ彼らの考え方に沿った形で命名が行われています。

1.当該制限酵素を産生する生物の属名の先頭の1文字、種名の先頭の2文字を記す。例えば大腸菌なら学名は Escherichia Coli ですから Eco、インフルエンザ菌なら Haemophilus influenzae ですから Hin となります。

2.制限酵素の由来がその生物のゲノムではなく、潜在ウィルスやプラスミドに由来する場合はそれらの頭文字(大文字)を記す。例えば EcoR。

3.生物の株によって産生する酵素が異なる場合、株名を記す。例えばHaemophilus influenzae のd 株(小文字)なら Hind となる。

4.同じ株が複数の制限酵素を産生する場合は、それぞれローマ数字をつける。例えばHaemophilus influenzae のd 株は3種の制限酵素を産生するので、それぞれ Hind I, Hind II, Hind III となります。

制限酵素によるDNA切断の様式を大きく分類すると、図6のような3種類になります。平滑末端を作るタイプの制限酵素は、リボンをハサミで切断するように、突出部位の無い平滑な末端(blunt end)をつくります。

5’ が突出するタイプの末端をつくる酵素は、DNAの両鎖ともに5’ が突出した末端が形成されます。Hind III の場合TCGAとAGCTという相補的な末端ができるので、これらは再びくっつき易いという特徴をもっています(cohesive end)。また3’-OH があって鋳型もあるわけですから、DNAポリメラーゼのよい標的になります。3’ が突出するタイプの末端を作る酵素は5’突出型と同様な特徴がありますが、DNAポリメラーゼの標的にはなりません(3’-OHはありますが鋳型がありません)。

 

A_6

 

現在4000種類の制限酵素がみつかっており、そのうち600種類は市販されているそうです(13)。

ところで図6の塩基配列をみればわかりますが、制限酵素が認識する部位は塩基配列が回文構造になっています。回文とはアニマルマニアのように前から読んでも後ろから読んでも同じ文のことですが、たとえばHind IIIが認識する配列は、AAGCTTであり、これ自体は回文ではありませんが、対面するDNAの塩基配列はTTCGAAであり、180度回転対称となっているので、この意味で回文構造と称しているわけです。

どうしてこのような構造になったのかの説明ですが、図7に示したように、回文配列はDNAの裏から酵素がアプローチしても塩基配列を認識できることから、2倍の効率のためという説がありますが、どうでしょう? 2倍の効率というのはちょっと低すぎると思います。実際には回文配列の部分が特異な構造なので、熱力学的に切断に要する化学エネルギーが少なくて済むからという可能性もあると思います。またII型制限酵素はホモダイマーあるいはテトラマーであり、同時にDNAの表裏を認識していると思われ、このような認識様式を利用して切断するというやり方が進化の初期に定まったというのがひとつの理由なのかもしれません(14)。

 

A_7

 

II 型制限酵素を使うと、自在にDNAを切断して再連結することができるので、例えば図8のように別種のDNA(AとB)をそれぞれHind III で処理し混合すると、それぞれAGCT、TCGAという相補的な突出部位を持っているので、再連結させることができます(アニーリング)。そしてDNAリガーゼで3’OHと5’Pを接続すると、AとBを連結したハイブリッドDNAができあがります(15)。

これはAという菌とBという別種の菌を融合した新種の菌ができる可能性を示唆しており、まさしく科学が神の領域にまで進出したということで騒ぎになりました。しかし誰も科学技術の進歩は止められず、20世紀末にDNAの加工に関連したテクノロジーは大発展をとげることになります。

 

A_8

 

細菌は I、II 型とは異なるタイプの制限酵素ももっていて、むしろ III 型はより一般的なのかもしれません。III 型制限酵素はエンドヌクレアーゼのサブユニット2+DNAメチラーゼのサブユニット2で構成されていて、I型のように塩基配列認識のためのサブユニットがないので、それぞれの酵素活性をもつサブユニットが認識していると思われます(16)。

例えばサルモネラ菌の StyL TI は5’-CAGAG-3’ という塩基配列を認識します。III 型はこの認識部位でDNAを切断するのではなく、25-27bp下流(3’側)で切断します。DNA切断にはマグネシウムイオンとATP、メチル化にはマグネシウムイオンとS-アデノシルメチオニンが必要です。細菌とファージの戦いは熾烈で永遠です。このほかにも IV型、V型などの制限酵素がみつかっているようです(17)。

ともあれ細菌の免疫機構という地味な研究の中で見つかった制限酵素を使うことによって、分子生物学が飛躍的な進歩をとげたことは奇跡的な幸運としか思えません。まさに目的指向的な研究だけをやっていては開かれない扉があることの証といえるでしょう。


参照

1)G. Bertani and J. J. Weigle., HOST CONTROLLED VARIATION IN BACTERIAL VIRUSES, J Bacteriol., vol. 65(2), pp.113-121. (1953)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169650/

2)Luria SE. Host-induced modifications of viruses, Cold Spring Harb. Symp. Quant. Biol., vol.18, pp.237-244 (1953)

3)Daisy Dussoix,Werner Arber., Host specificity of DNA produced by Escherichia coli: II. Control over acceptance of DNA from infecting phage λ., Journal of Molecular Biology, Vol.5, Issue 1, pp.37-49 (1962)
http://www.sciencedirect.com/science/article/pii/S002228366280059X?via%3Dihub

4)Werner Arber and Stuart Linn., DNA modification and restriction.,  Annual Review of Biochemistry., Vol.38, pp.467-500 (1969)

5)Matthew Meselson and Robert Yuan., DNA restriction enzyme from E.Coli., Nature 217, 1110-1114 (1968). doi:10.1038/2171110a0
https://www.nature.com/scitable/content/DNA-Restriction-Enzyme-from-E-coli-12388

6)Wil A. M. Loenen, David T. F. Dryden, Elisabeth A. Raleigh and Geoffrey G. Wilson., SURVEY AND SUMMARY  Type I restriction enzymes and their relatives.,  Nucleic Acids Research, Vol. 42, No. 1, pp. 20-44 (2014)
doi:10.1093/nar/gkt847

7)https://en.wikipedia.org/wiki/Hamilton_O._Smith

8)Jane Gitschier, A Half-Century of Inspiration: An Interview with Hamilton Smith. PLoS Genetics vol. 8, pp. 1-5 (2012)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257296/pdf/pgen.1002466.pdf

9)Hamilton O. Smith and Kent W. Welcox., A Restriction enzyme from Hemophilus influenzae: I. Purification and general properties., Journal of Molecular Biology
Vol. 51, Issue 2,  pp. 379-391 (1970)
http://www.sciencedirect.com/science/article/pii/002228367090149X?via%3Dihub

10)The Daniel Nathans Papers.  Restriction Enzymes and the "New Genetics," 1970-1980. US National Library of Medicine., NIH
https://profiles.nlm.nih.gov/ps/retrieve/Narrative/PD/p-nid/325

11)The Nobel Prize in Physiology or Medicine 1978
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1978/

12)Smith HO, Nathans D., A suggested nomenclature for bacterial host modification and restriction systems and their enzymes., J Mol Biol.. vol. 81(3), pp. 419-23. (1973)

13)https://www.thermofisher.com/jp/ja/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/molecular-cloning/restriction-enzymes/restriction-enzyme-basics.html

14)Pingoud A, Fuxreiter M, Pingoud V, Wende W., Type II restriction endonucleases: structure and mechanism., Cell Mol Life Sci., vol. 62(6), pp. 685-707. (2005)
https://www.ncbi.nlm.nih.gov/pubmed/15770420

15)R.W.オールド、S.B.プリムローズ 「遺伝子操作の原理」 第5版 関口睦夫監訳 培風館 (2000)

16)Desirazu N. Rao, David T. F. Dryden and Shivakumara Bheemanaik., SURVEY AND SUMMARY Type III restriction-modification enzymes: a historical perspective., Nucleic Acids Research, Vol. 42, No. 1 pp. 45–55 (2014)  doi:10.1093/nar/gkt616

17)https://en.wikipedia.org/wiki/Restriction_enzyme

|

2017年8月 5日 (土)

生物学茶話@渋めのダージリンはいかが82: 染色体3

減数分裂がおこるときには、体細胞分裂ではおこらない不思議な染色体の行動が観察されます。それは相同染色体を探してペアを形成することです。それぞれの染色体は2nですから、このペアは4nの遺伝情報を持っていることになります(図1)。このペアリングのことを日本語では相同染色体対合、英語では homologous chromosome pairing といいます。

この後2回の細胞分裂が起こって、4個の細胞(遺伝情報はそれぞれn)が生まれ、精子あるいは卵子となります。図1はこの1回目の細胞分裂と、通常の体細胞分裂を比較して示したものです。減数分裂の最初のステップで、染色体はどうやって相同染色体を探してペアリング(対合)するのでしょうか? 私はこの現象に関連する研究はやったことがありませんが、このことは学生時代からとても不思議で、いつも頭の片隅にひっかかっていました。

 

A

 

ペアリングがおこると染色分体同士がキアズマを形成して一部の遺伝情報を交換し、いわゆる染色体の組み換えを行うことが容易になるという利点があります(1、図2)。ただこのためだけにペアリングが行われるのかどうかはわかりません。その後の減数分裂の進行に必要なのかもしれません。

 

A_2

 

減数分裂時の相同染色体ペアリングは、マウス・ショウジョウバエ・酵母・シロイヌナズナ・小麦・コメ・たまねぎなどさまざまな生物で確認されています(3)。不可解なのは、相同染色体のペアリングの前に非特異的な染色体のペアリングがみられることです。Obeso らはこれをペアリングと呼ぶのはおかしいということで、カップリングと呼んでいます(3)。カップリングの意味は全くわかっていません。

Obeso らはカップリングからペアリングへの切り替えは、セントロメア近辺でおこるプログラムされたDNA損傷修復が引き金となっておこると述べています(3)。このことはカップルとなっている染色体を切り離すと言う意味があるかもしれません。しかしペアリングそのもののプロセスや染色体ペアの安定化はDNA損傷修復とは関係がないというのがコンセンサスになっています(4-5)。

現在問題となっているのは、ペアリングがセントロメア主導なのか、短腕・長腕での相互作用が機能しているのかという非常にプリミティヴなことで、まだまだ解決にはほど遠い感じがします。ただZip1というタンパク質が関係していると言うことは昔から言われています(6、7)。Zip1を欠く突然変異体では、ペアリングは成功しません(8、9)。Obeso らのモデルを図3に示しますが、これが正しいかどうかはわかりませんし、これはあくまでもペアリングした結果であって、どのような機構で染色体が正しいペアリングの相手をみつけたかはわかりません。

 

A_3

 

染色体というセクションの中で、もうひとつ述べておかなければならないことがあります。細菌や古細菌のDNAは環状であるのに対して、真核生物のDNA(クロマチン)は線状です。おそらく古細菌の中に線状のDNAを持つグループがいて、そのなかから真核生物が生まれたのではないでしょうか。現在ではその真核生物のルーツとおぼしきグループは絶滅したために、古細菌と真核生物のつながりがたどれなくなったと思われます。

線状DNAのメリットあるいはアドバンテージが何であるかということはよくわかりません。ただ原核生物にも真核生物にも線状のプラスミドを持つ生物がいることが知られています(10)。おそらく最初に線状化したのはプラスミドで、そのメカニズムを利用して、本家のDNAを線状化することに成功したのでしょう。線状DNAは環状DNAと違って、積み木のパーツとして使うことができるというメリットがあるかもしれません。例えば(本家DNA)-(プラスミド)-(別個体のDNA)という風につなげば、2n分のDNAを1分子としてまとめることができます。

メリットはともかくとして、線状DNAには大きなデメリットがあります。それは複製したDNAが短くなってしまうからです。どうしてそんなバカなことになるのでしょうか? それはやはり生物が歴史の産物だからです。何億年もDNAはプライマーRNAの3’OHを起点として複製されてきたので(11)、図4のように複製された新DNAの端にあるRNAプライマー(赤の点線)を除去したときに、線状DNAだと5’Pが露出するDNA末端をどうしようもないのです。地球上のどんなDNAポリメラーゼも5’P側からDNA鎖を延長することはできません。もしこれが環状DNAならば、ぐるっと一周した反対側に3’OHがあるので、そこからDNAを伸ばして連結できるのですが、線状だと何もないのでプライマーRNAの分だけDNA鎖が短くなってしまいます。

 

A_4

 

それともうひとつの問題は、DNAに端が存在するとそこから核酸分解酵素(エクソヌクレアーゼ)にDNAがかじられて、さらに鎖長が短くなってしまうおそれがあるということです。メッセンジャーRNAのように一時的にしか存在しない核酸分子でも、端はキャップとポリAでブロックされています。

この問題に最初に言及したのはハーマン・マラー(12)でした。マラーはX線によって生物に突然変異が発生することを発見し、それによって1946年にノーベル生理学医学賞を受賞しています。マラーはテロメアという言葉を発明し、染色体の逆位の研究などから染色体の末端が特別な構造になっていると予測しました。また動く遺伝子で後にノーベル賞を受賞したバーバラ・マクリントックも、染色体の端にはなんらかの先端キャップのような構造があることを指摘しました(13)。

しかしテロメアの構造と合成酵素が解明されたのは1970年代後半からで、エリザベス・ブラックバーン、キャロライン(キャロル)・グライダー、ジャック・ショスタクの3人が、この功績で2009年にノーベル生理学医学賞を受賞しています。彼らは鋳型RNAをかかえこんでいる酵素テロメラーゼによって、その鋳型を使用して線状DNAの末端に特殊な繰り返し構造が作られることを解明しました(14、15、図5)。

 

A_5

 

なおテロメアの塩基配列は生物によって異なっています(図6)。初期はテトラヒメナ(繊毛虫)を用いた研究が多かったので、図5ではTTGGGGという塩基配列が採用されています。かなり異なる塩基配列を用いている生物もいますが、ヒト・アカパンカビ(Neurospora crassa)・モジホコリ(Physarum polycephalum)・トリパノソーマで共通(TTAGGG)、昆虫(TTAGG)や植物の一部(TTTAGGG)とも1塩基違いというのは、強く保存された塩基配列と言えます。

 

A_6

 

テロメア形成の方法は図5では簡単すぎるので、別に図7(ウィキペディアより、16)を示して説明します。

 

1.複製終了後のDNA末端は5’末端のプライマーRNAが分解されて、その後を埋められず片鎖が短い状態です。
2.DNA末端にはテロメアに特異的な塩基配列があり、テロメラーゼは保有するRNAの相補的配列を利用してテロメアの末端に結合します。
3.テロメラーゼはテロメアDNA末端の3’OHと、自分が保有する鋳型RNAを使って、RNA-directed DNA polymerase 活性でテロメアを延長することができます。
4.2と3を繰り返すことによって、どんどんテロメアを延長します。したがってテロメアの塩基配列は同じ塩基配列がリピートした構造になります。
5.2~4の反応とは別に、テロメラーゼが保有するRNAの3’OH末端から、ギャップを埋め戻す反応をDNAポリメラーゼ(これはテロメラーゼではなく、DNA-directed DNA polymerase) を用いて行うことができます。この場合テロメラーゼのRNAはプライマーとして用いられます。

 

A_7

 

おそらく最初にDNA末端と結合したテロメラーゼはテロメアを自分保有の鋳型分延長すると、鋳型だけ残してDNAから離れるのではないでしょうか。このときに逆方向のDNA埋め戻しが行われ、鋳型RNAが分解されてから再びテロメラーゼが結合すると考えると説明しやすく感じます。

いずれにしても、このようにテロメラーゼがテロメアに結合することによって、テロメアの延長と短くなったDNAの修復が同時にできるので、これは素晴らしいメカニズムです。古細菌から真核生物に進化する過程で獲得された、このエンジニアが設計図を描いて制作したような巧妙な仕掛けに、私は茫然とするしかありません。

テロメアはテロメラーゼの活性が強いか弱いかなどの影響で、長い細胞と短い細胞があります。生物種によっても違います。一般的に通常の体細胞は培養していると、50~70回細胞分裂を繰り返すと、分裂を停止します。図8(ウィキペディアより)には分裂回数が省略して書いてありますが(実際には50~70回)、テロメラーゼの活性が無いか低くてテロメアが短くなってくると、安全装置のようなものが働いて細胞分裂が停止すると考えられています。一方生殖細胞・がん細胞などではテロメラーゼ活性が強く、細胞分裂を行ってもテロメアは短縮されにくいようです。

 

A_8

 

明らかにテロメアは細胞の寿命に関係していますが、テロメアを延長さえすれば細胞寿命が長くなると考えるのは早計です。実験用のマウスはヒトの数倍の長いテロメアを持っている上に、体細胞にもテロメラーゼの発現があることが知られています。しかしマウスの体細胞を培養すると、ヒトより早く分裂を停止しますし、そのときのテロメアは長いままです。だいたいマウスの寿命はヒトより30倍も短いので、テロメアが長ければ長生きできるというわけではありません。しかしテロメラーゼを欠損するマウスを作成すると、寿命が短縮されるというのもまた事実です。そしてこのようなマウスでテロメアを復活させると、若返りが実現します(17)。

しかし生きるために必要な遺伝子の変異や欠損は寿命の短縮を招く可能性があるわけで、テロメラーゼの変異だけが寿命を短縮させるわけではありません。さらにテロメアの短縮以外にも老化の理由は存在するということで、それらを解明しない限り不老不死は実現できません。たとえばDNAの修復に欠陥があれば、老化は進むでしょう。ただテロメラーゼを活性化すれば、肌の若返りくらいは可能かもしれません。ビル・アンドリュースなど大まじめに取り組んでいる人々もいます(18)。このクリームを塗ったら皮膚癌が増えたなんてことにならないよう祈りたいです。アマゾンで売っているかどうか調べたらありました。50gのビンが194400円です。

 

31tgbb1yehl__ac_us160__2

 

defytime TAA cream


参照

1)Bruce Alberts et al., Essential Cell Biology 4th edn., pp.645-657, Garland Science (2014)

2)染色体とその組み換え 遺伝子博物館
https://www.nig.ac.jp/museum/history/06_d.html

3)David Obeso, Roberto J Pezza, and Dean Dawson, Couples, Pairs, and Clusters: Mechanisms and Implications of Centromere Associations in Meiosis., Chromosoma., vol.123, pp.43-55. (2014) doi:10.1007/s00412-013-0439-4.

4)Clarke L, Carbon J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature, vol.305, pp.23-28.(1983)

5)Bisig C.G.et al., Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLoS genetics. Published: June 28, 2012
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002701

6)Sym M, Roeder GS. Zip1-induced changes in synaptonemal complex structure and polycomplexassembly. J Cell Biol., vol.128, pp.455-466.(1995) PMID: 7860625

7)Xiangyu Chen et al., Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis. PLoS Biol 13(12): e1002329. doi:10.1371/journal.pbio.1002329

8)Gladstone MN, Obeso D, Chuong H, Dawson DS. The synaptonemal complex protein Zip1 promotes bi-orientation of centromeres at meiosis I. PLoS genetics. 2009; 5:e1000771.

9)Newnham L, Jordan P, Rockmill B, Roeder GS, Hoffmann E. The synaptonemal complex protein Zip1, promotes the segregation of nonexchange chromosomes at meiosis I. Proc Natl Acad Sci USA., vol.107, pp.781-785. (2010)

10)郡家徳郎, 徳永正雄 酵母線状DNAプラスミドとキラーシステム ウイルスとの接点 化学と生物 vol. 41, pp. 832-841 (2003)
https://www.jstage.jst.go.jp/article/kagakutoseibutsu1962/41/12/41_12_832/_pdf

11)http://morph.way-nifty.com/grey/2016/11/post-7f79.html

12)Muller, H.J. The remaking of chromosomes. Collect. Net, vol. 13, pp. 181–195. (1938)

13)McClintock, B. The Association of Mutants with Homozygous Deficiencies in Zea Mays. Genetics, vol. 26, pp. 542–571. (1941)

14)http://www.nobelprize.org/nobel_prizes/medicine/laureates/2009/press.html or http://www.nobelprize.org/nobel_prizes/medicine/laureates/2009/bild_press_eng.pdf

15)中山潤一 解説 2009年ノーベル賞を読み解く 生理学医学賞 細胞のがん化・老化にかかわるテロメアとは? 
http://www.nsc.nagoya-cu.ac.jp/~jnakayam/_src/sc734/pubj12.pdf

16)https://en.wikipedia.org/wiki/Telomerase

17)Mariela Jaskelioff et al., Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice., Nature, vol. 469(7328): pp. 102–106 (2011)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057569/
http://www.med.keio.ac.jp/gcoe-stemcell/treatise/2011/20110725_02.html

18)http://テロメア.com/

 

 

|

« 2017年7月 | トップページ | 2017年9月 »