« 2017年1月 | トップページ | 2017年3月 »

2017年2月28日 (火)

生物学茶話@渋めのダージリンはいかが63: 構造タンパク質

タンパク質をその役割で分類すると、最もおおざっぱには酵素、制御因子、構造タンパク質、その他ということになります。構造タンパク質を代表するものとして、アクチンとミオシンがあります(ミオシンは酵素でもありますが)。これらは筋肉の主成分であり、肉食動物はこの2種類のタンパク質を主な栄養源として生きています。人間は雑食ですが、多くの人々は穀物(炭水化物)の他に、特に南米などではアクチンとミオシンを主要な栄養源としています。日本人も次第にそのようなライフスタイルに近づきつつあります。動物を殺さなくても美味な食事ができるようになれば、人間はもう少し高尚な生物になれると思いますが、エミール・フィッシャーの夢はなかなか実現しそうにありません。

生物が生物であるためには、生物と外界との間に仕切りが必要ですが、それは脂質が中心となった細胞膜です。細菌や植物はその外にさらに多糖類でできた細胞壁という構造を持っています。細胞壁はいわゆる動物にはありません。脂質の膜は細胞の内部にもあり、コンパートメントや物質輸送の役を果たしています。

ではタンパク質は細胞の構造形成にどのような役割を果たしているのでしょうか。ひとつは家で言えば柱とか梁のような、細胞に一定の形をとらせることです。とは言っても静的な恒久構造ではなく、ダイナミックに変化します。例えば筋肉は休んでいるときと、力を出しているときでは形態が異なります。もうひとつは細胞分裂を実行する構造ツールとしてタンパク質が機能するということです。

これらに関与しているタンパク質はほぼ3つのグループ、すなわちチュブリン、アクチン、中間系線維(線維という漢字が好まれますが、繊維でもかまいません)に分類できます。この3つのグループは、細菌・古細菌・真核生物のすべてに存在するユニバーサルなタンパク質です。

細菌では図1のように、チュブリン系のタンパク質であるFtsZは細胞分裂の際にZリングという構造を作って細胞と細胞の仕切りを形成する役割を果たしています。

アクチン系のMreBは細胞膜の直下に、細胞の全長に及ぶ繊維構造からなる螺旋状のネットワークを形成しており、細菌がロッド状の形態をとるために必要な役割を果たしています。またある種の細菌では真核生物の場合と同様、収縮リングをつくって細胞分裂を実行する役割を担っているようです(図1)。

中間系繊維グループのクレセンチンは、細胞が三日月のある種の細菌に存在し、細胞を屈曲させる役割を果たしています(図1)。人間の胃に住んでいるヘリコバクター・ピロリ、いわゆるピロリ菌もこの仲間のようです。栄養リッチな環境に住んでいる細菌は、その場所から流されたくないので、ひっかかりやすい構造をめざしたのでしょうか? 細菌の細胞骨格については、ウィキペディアにもう少し詳しい解説があります(1)。

 

A_4

 

真核生物におけるチュブリンは毛利秀雄(1930~、図2)によって発見・命名された分子量約5万の球状タンパク質で(2)、通常重合して微小管などの構造を形成しています。αチュブリンとβチュブリンは図3のようにヘテロダイマーαβを形成し、さらにそのヘテロダイマーが連結して線維状のプロトフィラメントを形成し、13本のプロトフィラメントが集合して管になったような形の微小管が形成されます(3)。微小管の直径は約25nmです。

 

A_2

 

A_5

 

精子の鞭毛を輪切りにすると、中心にある1対=2本の微小管を、9ペア=18本の微小管が取り囲むという美しい規則的な構造になっています。微小管の周囲に存在するダイニンはATPが持つ化学エネルギーを運動エネルギーに変換することができるタンパク質(モータータンパク質)であり、これらの作用によって精子は鞭毛を動かし、泳いで卵に到達することができます(図4)

 

A_6

 

アクチンはF.B.シュトラウプ(1914-1996、図2)によって発見された、分子量約4万2千の球状タンパク質です(4)。微妙に異なる6種類があり、冒頭で述べた筋肉を作るタイプのものとは異なるβ型アクチンは、重合してマイクロフィラメントという直径6nm前後の線維を形成し、微小管と同様細胞骨格の役割を果たしています(図5)。アクチン自体はモータータンパク質ではありませんが、ATPやADPと結合することによって線維形成が制御されています(5、6)。

 

A_7

 

細胞形態がいかにチュブリンやアクチンに依存しているかということは、図6をみれば一目瞭然です。細胞質の中は微小管やマイクロフィラメントのジャングルジムのようです。これらの細胞骨格はジャングルジムと違ってフレキシブルで、次の瞬間には別の形になることもあります。微小管やマイクロフィラメントは常に多くの分子が参加したり離脱したりしているので、細胞の柱や梁といっても、非常に流動的なパーツではあります。

 

A_8

 

細胞骨格にはもうひとつの要素、すなわち中間径線維があります。中間径というのは線維の直径が微小管とマイクロフィラメントの中間という意味で、約10nmのサイズになります。中間径フィラメントを構成するタンパク質には、ケラチン、ニューロフィラメントタンパク質、デスミン、ビメンチン、ラミンなどがあり、細胞の種類によって特異性があります。ミオシンもこのグループに近いタンパク質です。

中間径線維の代表としてケラチンに注目してみましょう。ケラチンは毛髪・爪・表皮・角・くちばし・ウロコなどの主成分となるタンパク質です。ケラチンはヒトのものだけでも54種類あり、まだ増えるかもしれません(7、8)。ケラチン分子は細長い線維性(フィブラス)の分子で、図7のように4量体(テトラマー)をつくり、それを基本単位としてタンデムに結合してマイクロフィラメントが形成されます。8本のマイクロフィラメントが集合してマイクロフィブリルを形成し、マイクロフィブリルがさらに集合して毛や皮膚などの細胞に充満しています(図7)。

 

A_9

 

図8は私が撮影した毛の断面の電子顕微鏡写真で、まだ完全にケラチン線維で埋め尽くされていない未分化な下部の構造です。ケラチン線維の束(マイクロフィブリルまたはミクロフィブリル)の間に隙間がまだみられます。

 

A_10

 

筋肉は中間径線維グループに近縁のミオシンと、全く別オリジンのアクチンなどのタンパク質が共同して作った驚異的な芸術的作品です。筋肉によって動物は歩行し、呼吸し、消化し、出産し、飛翔し、遊泳し、目のピントを合わせ、キーボードをたたくことができます。いずれまた話題になると思いますので、ここでは1枚の私が撮影した電子顕微鏡写真だけ貼っておきます(図9)。私の過去記事が(9,10)にありますので、お時間のある方はどうぞ。

A_11

 

参照

 

1)こちら

2)Mohri H., “Amino-acid composition of Tubulin constituting microtubules of sperm flagella.”. Nature vol. 217, pp. 1053-1054 (1968)  PMID 4296139

3)Nogales, E., Wolf, S.G., Downing, K.H. , Structure of the alpha beta tubulin dimer by electron crystallography. Nature vol. 391, pp. 199-203 (1998)

4)Straub FB., Actin,  Studies Inst Med Chem Univ Szeged. vol.2, pp. 3–16 (1942)
http://actin.aok.pte.hu/archives/pdf/StudiesII_1.pdf

5)https://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%AF%E3%83%81%E3%83%B3

6)Geoffrey M Cooper, Structure and Organization of Actin Filaments. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA) (2000).
https://www.ncbi.nlm.nih.gov/books/NBK9908/

7)http://www.kuhp.kyoto-u.ac.jp/~pathology/templates/keratin.html

8)片方陽太郎 ケラチン蛋白質の生化学 -構造、機能、そして遺伝子まで-、蛋白質 核酸 酵素 vol. 38, pp. 2711-2722 (1993)
http://lifesciencedb.jp/dbsearch/Literature/get_pne_cgpdf.php?year=1993&number=3816&file=sU0K8gPLUSkWylrPLUS03QAhjDig==

9)ミオシン  http://morph.way-nifty.com/grey/2011/01/post-0d3e.html

10)アクチンの系譜  http://morph.way-nifty.com/grey/2013/09/post-9bba.html

 

 

 

 

 

 

 

 

|

2017年2月21日 (火)

生物学茶話@渋めのダージリンはいかが62: 酵素2

第二次世界大戦前までに、酵素はタンパク質であり、生命現象に必要なほとんどの化学変化は、酵素によって触媒される反応であることが明らかになりました。大戦後は酵素の作用機構や制御が主要な課題となりました。

エミール・フィッシャーの古典的な「鍵と鍵穴」説の検証と、新しい概念構築の中心になったのはジャン=ピエール・シャンジュー(1936-)でした。シャンジュー(図1)は学生の頃パスツール研究所のジャコブ&モノー研究室で過ごました。彼はそこでタンパク質は固定した形を持つものではなく、基質や様々な制御因子の影響、オリゴマーの形成などによって形を変えるフレキシブルな物質であることに注目し、アロステリック変化という概念を提出しました(1)。この理論はダニエル・コシュランド(1920-2007、図1)らによってさらに発展し、「誘導適合説」などが提唱されました。このあたりの事情を知るには、コシュランドが書いたレビューが出版されています(2)。コシュランドは第二次世界大戦中はマンハッタン計画に参加して、原爆製造の仕事にかかわっていました(3)。

 

A

 

簡単に説明すると、図2のように「鍵と鍵穴」説ではもともと鍵にぴったり合った鍵穴があることになっていますが、「誘導適合」説では、基質の接近によって酵素が形態(コンフォメーション)を変えて、基質を取り込むということになります。

またこのコンフォーメーションの変化に伴って、ケミカルアタックを行うサイト(catalytic site、図2の赤のサイト) が基質と接近して活動を行うことができるようになります。このサイトは2ヶ所に分かれていて、サイト-基質-サイトという形で電子や原子の受け渡しを行ないます。

 

A_2

 

では具体的にトリオースリン酸イソメラーゼを例にとって。酵素反応の機構をみていきましょう(4)。この酵素はジヒドロキシアセトンリン酸(DHAP)をD-グリセルアルデヒド3リン酸(GAP)に代謝するときに利用されます。これはグルコースをピルビン酸に代謝する解糖経路の要所にある重要な反応です。ケトンをアルデヒドに変換する反応のひとつという見方もできます(図3)。

 

A_3

 

酵素のポケット(鍵穴)に取り込まれたDHAPは、まずグルタミン酸側鎖COO-の電子をうけとってC1とC2の結合を二重結合化します。このときC1とC2はそのままでは共に5価になってしまうので、C1はHをひとつ手放し、C2は酸素との二重結合を一重結合化します(図4、図5)。

 

A_4

 

C2と二重結合していたOの解放された電子はヒスチジン側鎖のNHに攻撃を仕掛け、Hを奪い取ります(図5)。

 

A_5

 

Hを奪い取られたヒスチジン側鎖のNはC1からHを奪い返します(図6)。

 

A_6

 

C1は酸素との結合が二重結合になってしまうので5価となり、C2との二重結合を一重結合にします。この結果C2は3価となるので、グルタミン酸側鎖のカルボキシル基からHを奪って4価にもどします。

 

A_7

 

因果は巡って、結局GAPが生成され、95番のヒスチジン側鎖と165番のグルタミン酸側鎖も元通りに戻ります。すなわち酵素トリオースリン酸イソメラーゼはもとのままで、DHAP→GAPの化学反応が遂行されました。

 

A_8

 

これはわかりやすいですが単純化された仮説で、実際にはもっとさまざまな活性部位周辺のアミノ酸が反応に関与していると思われます。

さてすべての酵素は基質濃度だけに反応して、役目を果たすのでしょうか? 生命体に必要な生体分子の濃度は制御されているはずなので、基質をほとんど使い切るまですべての反応が進行するということは考えられません。実際酵素には阻害物質を利用して、反応生成物を適度な濃度で管理するという機構がしばしば存在します。

最も単純なのは図9のように、基質と同じ鍵穴にアクセスできる別の鍵があり、その鍵が先にはまってしまうと基質は鍵穴にアクセスできなくなるというメカニズムです。すなわち基質と阻害剤が同じサイトに競合してアクセスしようとするわけですから、どちらがアクセスできるかはそれぞれの濃度に依存します。したがってもし大過剰の基質を投入すれば、阻害剤の影響は無視できる程度に低下するはずです。このような単純競合の場合、タンパク質自体の立体構造の変換を伴わないので、アロステリック制御とは言えません。


A_9

 

しかし図10の場合のように、阻害剤がアクセスする別のサイト(鍵穴)があって、そこに阻害剤がアクセスすると基質の鍵穴が変形して使用不能になるとすれば、これはアロステリック制御のひとつであり、このようなケースでは基質を大過剰にしても反応は抑制されることになります。この非拮抗阻害と呼ばれる方式ですと、阻害剤が高濃度に存在すると反応が完全に停止するので、反応を再開するには阻害剤が代謝されてしまうことが必要になります。


A_10
阻害の様式にはもうひとつ、不拮抗阻害というのがあり(図11)、この場合フリーの酵素に阻害剤はアクセスすることができず、基質が結合した酵素にしかアクセスできません。阻害剤がアクセスに成功すると、基質結合部位がアロステリック効果により変形して基質が結合できなくなります。阻害剤がアクセスするまでの時間的余裕があるので、基質があればある程度反応は進行し、その後阻害されるということになります。

 

A_11

 

阻害剤という反応進行に負の影響を及ぼす因子について述べてきましたが、このような阻害剤による負のアロステリック効果だけでなく、正のアロステリック効果も存在します(図12)。この場合、正のAE(アロステリックエフェクター)が酵素にアクセスすることが引き金になって、基質結合部位が形成され反応が開始します。

酵素反応は一般に無制限に進行することは許されず、特定のタイミングで適切な量の反応生成物を得ることを目的としています。細胞外に放出されるペプシンですら、胃に食べ物がないときには放出されないように制御されています。酵素反応をいかに制御するかということは、生命現象の本質のひとつと言えるでしょう。

 

A_12

 

一連の酵素反応の結果生成された最終反応生成物が阻害因子となって、自らを生成した酵素反応カスケードを停止させるという場合があり、これをフィードバック制御といいます(図13)。例えばアスパラギン酸トランスカルバモイラーゼは最終反応生成物であるCTPによって阻害されます(5)。このような負のフィードバック制御が一般的ですが、なかには最終反応生成物が一連の反応を加速させる場合もあり、これは正のフィードバック制御です。途中で神経伝達が関与していますが、オキシトシンが分泌されて子宮収縮=分娩が促進されるような場合がその1例と考えられます。

 

A_13

 

参照:

 

1)Monod, J.; Wyman, J.; Changeux, J. P. On the Nature of Allosteric Transitions: A Plausible Model. Journal of Molecular Biology. vol.12, pp.88-118 (1965). doi:10.1016/S0022-2836(65)80285-6. PMID 14343300.

2)Daniel E. Koshland Jr., The Key-Lock Theory and the Induced Fit Theory. Angewandte Chemie col.33, pp.2375-2378 (1995)

3)https://en.wikipedia.org/wiki/Daniel_E._Koshland_Jr.

4)http://www.proteopedia.org/wiki/index.php/Triose_Phosphate_Isomerase_Structure_%26_Mechanism

5)Berg JM, Tymoczko JL, Stryer L., Biochemistry 5th edn. Section 10.1, W. H. Freeman (2002)
https://www.ncbi.nlm.nih.gov/books/NBK22460/

 

 

 

 

 

 

 

 

|

2017年2月15日 (水)

生物学茶話@渋めのダージリンはいかが61: 酵素1

A酵素を誰が発見したのかというのは、やや難しい問題です。歴史をたどっていくことにしましょう。

1752年、フランスの科学者ルネ・レオミュール(René-Antoine Ferchault de Réaumur、1683-1757、図1)は、消化されなかった食べ物を吐き出す習性があるトンビに目を付け、金網で囲った肉を食べさせて、はき出した金網の中の肉が溶けていたことを確認ました。さらにスポンジ(当時のことですから海綿)を食べさせて、はき出したスポンジから胃液を集め、その胃液に肉片を浸すことで肉片が溶けることも観察しました(1、2)。

この結果からレオミュールは、胃液には肉を分解する物質が含まれると考えました。

レオミュールという人は偉大な昆虫学者で、全六巻からなる大著「昆虫誌」(3)を出版しました。もちろんフランス語ですが、オープンライブラリーで閲覧可能なようです。

 

レオミュールの観察を受け継いだのは、イタリア人のラッザロ・スパランツァーニ(Lazzaro Spallanzani, 1729- 1799、図2)という人でした。

彼はレオミュールの実験をさまざまな動物で追試し、吐き出した海綿中に消化を行う物質があることは間違いないという確信を持ちました。それからが彼の異常なところで、1776年に同じ実験を自分自身の体を使って追試してみようと考えたのです。といっても思いつきでやってみたのではなく、イヌやヘビに布袋を飲ませようとしてかみつかれるなどの困難に直面した後の苦渋の決断だったようです。

 

A_2スパランツァーニはまず研究ず布袋にパンを入れて飲み込み、排泄された布袋の中からパンが無くなっていることを観察しました。

次に竹を削って木筒をつくり、そのなかにパンや肉片を入れ、小さな穴を開けた木筒を布袋に入れて飲み込みました。出てきた木筒の中の食物はなくなっていました。

これによって胃ですりつぶされて食物が粉々になったためになくなったわけではないことが証明されました。木筒に骨を入れた場合は、消化されずにそのまま出てきました。

このような実験を多数繰り返して、スパランツァーニは胃には鳥類の砂嚢のように食べ物を粉々にする作用はなく、胃液に含まれる因子によって食べ物が消化されるのだという確信を持ちました。

しかしもう一押し、胃液を取り出して、その中で食べ物が消化されるのを見たいと思うのは、科学者として必然のなりゆきでしょう。そこからがまた彼の凄いところで、指をノドに突っ込んで自分の胃液をはき出すトレーニングをして実行したのです。そして実際に自分の胃液の中で肉が消化されるのを観察しました。それは腐敗とは違うことも確認しました。さらに前記の肉片の入った木筒を飲み込み、しばらくして吐き出すという名人芸も会得し、中を調べてみると肉片が消化されかかっていました。

 

A_3スパランツァーニが一連の自分の体を使った人体実験から得た結論は、「消化は機械的粉砕や微生物による腐敗や発酵ではなく、胃液が促進する通常の化学反応だ」 というものでした。

彼の功績は「自分の体で実験したい」という本に詳しく記してあります(4)。この本の表紙を図3に示しました。布袋を飲み込みつつあるスパランツァーニの姿が表紙になっています。

この本にはスパランツァーニ以外にも、自分をモルモットにして命がけで実験をした大勢の科学者の業績が記されています。命を落とした人もいるということで合掌・・・・・。

18世紀におけるレオミュールやスパランツァーニの偉大な実験にもかかわらず、多くの科学者が酵素の存在を確信するまでには、さらに1世紀もの長い時間が必要でした。

19世紀に入ると、まずパヤン Anselme Payen (1795‐1871) とペルソ Jean Francois Persoz (1805‐68)(図4) が、麦芽抽出液からデンプンをグルコースに分解する酵素を分離しジアスターゼと名付けました(1833年、5)。これは現在ではアミラーゼと呼ばれています。

 

 

 

A_19

 

スパランツァーニの研究もいくつかの研究室で引き続き発展しました。1834年ヨハン・エベールは乾燥させた胃の粘膜から消化能力のある溶液を調製することに成功しました。その溶液で処理すると、卵白アルブミンは溶けてしまうだけではなく、検出できなくなりました。

細胞説で有名なテオドール・シュワンはエベールの実験結果に注目し、1836年に胃液に含まれる成分がアルブミン以外のタンパク質も分解することを確認して、ペプシンと命名しました。しかしそのペプシンを精製することはできませんでした。

19世紀の生化学で優勢だったのは、パスツールが証明した「生物は生物からしか生まれない、そして発酵や腐敗は微生物によって行われる」という考え方で、消化もやはり微生物の作用あるいは何らかの生命力によると思われていましたが、一方でパヤン&ペルソらの酵素の作用による有機物の化学変化もまた無視できないという隔靴掻痒の状況にありました。

 

A_5そうした中で、1897年エドゥアルト・ブフナー(Eduard Buchner, 1860- 1917、図5)がすりつぶした酵母をろ過した抽出液(無細胞抽出液)の中で、糖が発酵してアルコールと二酸化炭素になることを発見したことは大きな衝撃でした(6)。すなわち生きた細胞がいなくてもアルコール発酵が行われることが証明されたことになります。

これで生気説は否定され、有機物の生成や分解も普通の化学変化にすぎないという考え方が勝利しました。ブフナーは1907年にノーベル化学賞を受賞しました。しかしその10年後に第一次世界大戦で従軍し、戦死しました。

最終的に酵素がタンパク質であるということが証明されたのは20世紀も深まってからでした。

1919年に米国の化学者ジョン・ノースロップ(John Howard Northrop, 1891- 1987、図6)はペプシンを単離して結晶化し、それがタンパク質であることを証明しました(7)。ノースロップは1946年にノーベル化学賞を受賞しています。

 

A_6
結論的に言えば、酵素の発見は誰がというより、ここで述べた科学者達を中心とした多くの科学者達が、200年近くの歳月をかけてなしとげた業績です。

酵素の作用機構についてはすでに1894年からエミール・フィッシャーが「鍵と鍵穴」説を発表しており(8)、基本的には現在でも正しいと考えられています。

すなわち酵素には基質(=鍵)を凸とすると凹の形態を持った鍵穴があり、そこに基質を収納すると基質がケミカルアタックを受けて生成物に変化するという考え方です(図7)。

 

 

 

A_7

 

この過程を、レオノア・ミカエリス(1875-1949)とモード・メンテン( 1879-1960)(図8)は次のような化学式で表現しました。

酵素 (E) + 基質 (S) ⇄   酵素基質複合体 (ES) → 酵素 (E) + 生成物 (P)
E: enzyme, S: substrate, ES: enzyme-substrate complex, P: product

 

A_10

 

ここで重要なのはE+S⇄ ESの1段階目の反応は可逆的なのに、2段階目のES→E+Pという反応は不可逆的だということです。もしそうでなければ、デンプンを分解してブドウ糖を生成しエネルギー源として利用しようとしても、ブドウ糖がある程度たまるとデンプンに逆戻りしてしまうという不都合が発生します。ただし生成物が少量で良い時などには、フィードバック制御という別プロセスで酵素に阻害がかかり、反応が停止するということはあります。

酵素は触媒の1種ですが、金属触媒などを用いた無機化学反応と違って、基質濃度を上昇させてもあるところで頭打ちになってしまいます。基質濃度を横軸、反応速度を縦軸としてグラフを描くと図9のようになります。

 

A_11

 

1913年にミカエリスとメンテンは、このグラフを数式で表現する、ミカエリス・メンテンの式を発表しました(図10、参照9)。

A_12

図9において、最大反応速度はVmax、その2分の1の反応速度で反応が進行しているときの基質濃度をKmとしています。ミカエリス・メンテン式において、[S] = Km とすると、v = 0.5 x Vmax となります。

ミカエリス・メンテン式の導出のしかたについて興味がある方はサイト(10)を参照して下さい。

本稿でもうひとつ触れておきたいのは、酵素が化学変化の過程において、活性化エネルギーを低下させるということです。

物質Aは自然に自由エネルギーが低い物質Bに変化していくことは、熱力学の第2法則が示していますが、それでも物質Aが存在しているのは、物質Bに変化するために要する時間が無限大に近いことによります。

酵素は物質A(基質=S)が物質B(生成物=P)に変化するために必要な、自由エネルギーが両者より高い中間段階に持ち上げるための活性化エネルギーのレベルを下げる作用を持っています(図11)。このことによって変化に必要な時間を著しく短縮することができるので、生命現象に必要な化学変化を現実的な時間で実行することが可能になるわけです。

 

A_13

 

参照:

 

1)こちら1

2)http://contest.japias.jp/tqj2005/80064/kousohakkenn.html

3)René-Antoine Ferchault de Réaumur, Memoires pour servir a l'histoire des insectes. A Paris : De l'imprimerie royale (1734) 
https://archive.org/details/memoirespourserv01ra

4)「自分の体で実験したい 原題:Guinea Pig Scientists」 Leslie Dendy and Mel Boring 著 梶山あゆみ訳、紀伊國屋書店 (2007)

5)A. Payen and J.-F. Persoz, "Mémoire sur la diastase, les principaux produits de ses réactions et leurs applications aux arts industriels" (Memoir on diastase, the principal products of its reactions, and their applications to the industrial arts), Annales de chimie et de physique, 2nd series, vol. 53, pages 73–92 (1833)

6)Eduard Buchner, “Alkoholische Gärung ohne Hefezellen (Vorläufige Mitteilung)”. Berichte der Deutschen Chemischen Gesellschaft vol. 30,  pp. 117–124 (1897)

7)Northrop J.H., Crystallin pepsin., Science vol. 69, p. 580 (1929)

8)Emil Fischer, Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft, Volume 27, pp. 2985–2993 (1894)

9)Michaelis, L.,and Menten, M., Die kinetik der invertinwirkung, Biochemistry Zeitung vol. 49, pp. 333-369 (1913)

10)https://ja.wikipedia.org/wiki/%E3%83%9F%E3%82%AB%E3%82%A8%E3%83%AA%E3%82%B9%E3%83%BB%E3%83%A1%E3%83%B3%E3%83%86%E3%83%B3%E5%BC%8F

 

 

 

 

 

 

 

 

 

 

 

 

|

2017年2月 9日 (木)

生物学茶話@渋めのダージリンはいかが60: タンパク質の基本2

アミノ酸はアミノ基とカルボキシル基を持っているので、酸性溶液中ではアミノ基がNH3+となって塩基、アルカリ性溶液中ではカルボキシル基がCOOーとなって酸となります。

 

A

 

図1は酸性の溶液にアラニンを溶解し、アルカリ(OHー)を加えて滴定したときのpH変化を示したものです。まずpH2あたりで勾配がゆるやかになりますが、このあたりではアラニンは

+HN-CHCH-COOH → +HN-CHCH-COO- + H+

のようになるので、加えたOH-はH+に吸収され、pHの上昇がゆるやかになります。もう1ヶ所、pH10あたりで勾配がゆるやかになりますが、これはこのあたりで

+HN-CHCH-COO- → HN-CHCH-COO- + H+

となってもう1個プロトンが放出されるので、pH上昇がもう一度ゆるやかになります。このような緩衝作用を2ヶ所で発揮するのが、両性電解質の特徴です。アミノ酸によって緩衝作用を発揮するpH領域は異なるので、アミノ酸の混合液は広い範囲にわたって、環境の変化に対してpHを一定に保つ働きがあり、生物に福音をもたらします。

+HNとCOO-が拮抗して存在するpHを等電点といいます。アラニンの場合6.00です。

タンパク質は1分子中に通常多数のアミノ基とカルボキシル基を持っているので、当然アミノ酸と同じく両性電解質です。ペプチド鎖のN末とC末以外のアミノ酸の種類によって、タンパク質の緩衝領域や等電点は著しく変化します。この変化に寄与するのは主として酸性アミノ酸(グルタミン酸とアスパラギン酸)と塩基性アミノ酸(アルギニンとリジン)です(図2)。

 

A_2


この4種のアミノ酸が持つ側鎖の数によって、タンパク質の性質は大きく変わります。タンパク質の種類によって、酸性アミノ酸あるいはアルカリ性アミノ酸の含有量に差があるので、例えば等電点には大きなバリエーションがあります(図3)。

 

A_3

例えばリゾチーム(ニワトリ卵白)という酵素のアミノ酸配列をみますと、塩基性アミノ酸の数が酸性アミノ酸の数を上回っており、このような場合タンパク質は塩基性となります(図4)。図3に示されるように、リゾチームの等電点は11を少し上回っています。

 

A_4

一方イヌのペプシンBのアミノ酸配列をみますと、酸性アミノ酸の数が塩基性アミノ酸の数を大きく上回っています。このような場合タンパク質は酸性となります(図5)。ペプシンの場合偏りが極端で、等電点が1となります。胃という特殊な環境で作用する酵素なので、特殊な構造をもっていると思われます。

 

A_5


生化学実験では等電点の違いを利用してタンパク質を分離精製するという作業がよく行われます。タンパク質の混合液に電流を流して、酸性タンパク質は+側に、塩基性タンパク質は-側に移動するのを利用するわけですが、実際には自然拡散や振動の影響を回避するため、タンパク質が移動できる程度のゆるいゲルを用います(図6)。

 

A_6


図6には両性電解質をゲルに溶かしておく場合を示していますが、ゲルを作成するときに予めpHの勾配を作ってあるのを購入して使うというのが簡便で、よく利用されます(1)。タンパク質は通常プラスかマイナスにチャージしているので、精製された分子同士は電荷の反発でくっつきにくいのですが、等電点周辺では分子としてはチャージがなくなるので接近しやすく、場合によっては沈殿が発生します。これは等電沈殿という現象で、等電点電気泳動を行う場合には注意しなければいけません。

等電点電気泳動法で分離した後、分子量の差を利用してさらに分離すると、少量とは言え、かなり純度の高いタンパク質が得られる場合が多いです(2、3)。もっと大量のタンパク質を精製する技術は、今でも生化学者の腕のみせどころで、非常に多くの方法が考案されています(4、5)。

タンパク質にはもうひとつ特徴的な性質があります。それはある条件で相転移を行うことで、典型的な例は熱変性です。図7のように生卵に熱を加えると、ある時点で不可逆的にゆで卵になります。これはαヘリックスやβシートというタンパク質の基本構造が、熱によって破壊されることが主な原因です。αヘリックスやβシートは弱い水素結合によって形成されているので、温度が上昇すると不安定になり、構造が破壊されてランダムに近い状態になってしまいます。これによって多数の分子がからまりあって集合し、不溶性のかたまりを形成します。ただしペプチド結合は破壊されないので、バラバラになる(アミノ酸単体に分解される)ことはありません(図7)。みずからバラバラにはなりませんが、タンパク質分解酵素で切断されやすい部分が露出して、分解されやすい状態にはなりやすいと思われます。

 

A_7

 

タンパク質には完成後に化学的修飾を受けて機能を発揮する分子も少なくありません。非常に色々な修飾が報告されていますが、ここでもいくつか紹介します。まずリン酸化について見てみますと、セリン・スレオニン・チロシンのOHがリン酸化されてOPO3-となります(図8)。リン酸化されているかいないかということが、あるシリーズの生体化学反応の起動スイッチになっている場合が多く、タンパク質のリン酸化は情報伝達のキーとなるイベントになっています。この分野のパイオニアはジョージ・バーネットとユージン・ケネディでしょう(6)。最近話題の抗がん剤オプジーボのターゲットであるPD-1もリン酸化されることによってスイッチを起動するタンパク質のひとつです(7、関連参考文献8)。

 

A_8

 

タンパク質のアセチル化も重要な化学修飾です。ヒストンの低アセチル化は転写が抑制されたヘテロクロマチン状態のマーカーとされています(9)。また癌抑制因子として最も有名なp53はアセチル化によって活性化あるいは安定化することも知られています(10-12)。すでに述べたシステインのSS結合や、糖の付加なども非常に重要な化学修飾であり(図9)、その他にも多数の化学修飾が知られています(13)。

 

A_9

 

参照:

1)http://www.gelifesciences.co.jp/technologies/2d-electro/guide-3.html

2)http://www.gelifesciences.co.jp/technologies/2d-electro/guide.html

3)https://www.sbj.or.jp/wp-content/uploads/file/sbj/9003/9003_yomoyama_2.pdf

4)http://www.jaist.ac.jp/~yokoyama/pdf/02_1analysis1.pdf

5)http://www.gelifesciences.co.jp/newsletter/biodirect_mail/technical_tips/

6)G. Burnett and E.P. Kennedy, The enzymatic phosphorylation of proteins, J. Biol. Chem. vol. 211, pp. 969–980 (1954) こちら

7)http://www.ft-patho.net/index.php?Programmed%20cell%20death%201

8)Joseph Schlessinger, Receptor Tyrosine Kinases: Legacy of the First Two Decades.  Cold Spring Harb Perspect Biol. vol. 6,  pp.1-13 (2014) doi: 10.1101/cshperspect.a008912.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949355/pdf/cshperspect-RTK-a008912.pdf

9)https://www.cstj.co.jp/reference/pathway/Protein_Acetylation.php

10)http://www.cyclex.co.jp/resource/keyword/jkeyword_2.html

11)田中知明、転写因子p53の翻訳後修飾と転写活性化機構. 生化学第82巻第3号,pp. 200-209 (2010)

12) Nature ダイジェスト : http://www.natureasia.com/ja-jp/nature/highlights/79254

13)https://ja.wikipedia.org/wiki/%E7%BF%BB%E8%A8%B3%E5%BE%8C%E4%BF%AE%E9%A3%BE

|

2017年2月 2日 (木)

生物学茶話@渋めのダージリンはいかが59: タンパク質の基本1

タンパク質は生物の体を構成する要素として最も重要な物質であり、同時に栄養源としても重要です。タンパク質に含まれるアミノ酸の数をnとすると理論上20のn乗の種類のタンパク質があり得ますが、遺伝情報としてDNAに刻まれているのは、哺乳類では2万数千種類くらいです。それらは生物の歴史を反映したものであり、なかには細菌・古細菌・真核生物のすべてにおいて機能しているタンパク質も少なくありません。

これまでの復習もかねてタンパク質の基本構造を示すと、図1のようになります。まずアミノ酸がペプチド結合でつながった1次構造。すなわちつながるアミノ酸の順列が一番基本的な構造になります。次にαヘリックス・βシート・ランダムコイル(実際にはランダムじゃないので適切な言葉とはいえません)・その他の規則的な構造などのローカルな共通構造を2次構造とよびます。数学で言う「次元」とは別の概念なので注意しましょう。

 

A

αヘリックスやβシートなどを空間に3次元的に配置したものを3次構造とよびます。図1のリゾチームの図がそれにあたります。リゾチームは多糖類を分解する酵素です。3次構造で示した同じまたは異なるタンパク質が、特定の配置で集合したような場合、その集合体を4次構造とよびます。

タンパク質の3次元構造は、X線結晶解析によって解明されました(1、2)。この功績によりジョン・ケンドリュー(1917-1997)とマックス・ペルーツ(1914-2002)(図2)は1962年のノーベル化学賞を受賞しました。同じ年にワトソンとクリックもノーベル医学生理学賞を受賞したので、この年のノーベル賞は、タンパク質とDNAの構造解明者が同時に受賞するという、分子生物学の歴史上最大の出来事と言っても良いでしょう。

 

A_2

ペルーツ自身はナチが台頭する前にウィーンからイングランドに留学していたのですが、ナチの侵略後は両親が難民となったため資金を絶たれピンチとなりました。しかしロックフェラー財団の援助で学業・研究を続けられたそうです。第二次世界大戦中は氷山空母(氷の上から戦闘機が飛び立つ)を建造する計画に参加していました(3)。

ケンドリューは英国空軍の研究所でレーダーの研究をしていましたが、なぜかタンパク質に関心を持つようになって、生物物理学の分野にやってきた人です。ケンドリューとペルーツは二人ともケンブリッジ大学のキャベンディッシュ研究所に在籍し、サー・ローレンス・ブラッグの高弟でした。ワトソンとクリックがDNAの構造を解明したのも、この研究所での仕事でした。

彼らが研究材料として用いたミオグロビンというタンパク質(図3)は、クジラなど海に棲む哺乳動物の筋肉に豊富なもので、酸素を強く結合して保管しておき、血液中の酸素濃度が低下したときに放出して、長い時間海に潜ったままで活動する彼らの生活をささえています。血液中の酸素リザーバーはヘモグロビンで、ミオグロビンと類似したグロビン分子4つで構成されています(図5)。ですので単独分子のミオグロビンはヘモグロビンよりかなりシンプルな構造であり、研究材料として好適だったわけです(4)。もちろんクジラからなので、サンプルが大量に確保できるという利点もありました。

 

A_3

 

ただちょっと複雑なのは、ミオグロビンはアミノ酸が連結した鎖だけでできているのではなく、ヘムという非タンパク質の、いわゆる補欠分子族といわれる物質を含んでいます。ヘムはポルフィリン環と中央部の鉄原子からなり、この鉄原子は酸素分圧によって、酸素と結合したり分離したりします(図4)。この反応を利用してミオグロビンは酸素不足時に筋肉に酸素を供給しています。ミオグロビンは8つのαヘリックスをもつ安定な構造のタンパク質で(図3)、ヘムを組み込むことによって適切に酸素を組織に供給する役割を果たしています。

 

A_4

 

ヘモグロビンはミオグロビンに類似したαグロビンとβグロビンを2個づつ組み合わせた4量体タンパク質で、前述の4次構造を持っています(図5)。それぞれのグロビンがひとつのヘムを持っているので、1分子のヘモグロビンには4個のヘムが存在します。ヘモグロビンのヘムは、ミオグロビンのヘムにくらべて酸素との親和性が低く、酸素を放出しやすい性質を持っています。ヘモグロビンやミオグロビンは単なるヘムの台座ではなく、必要な酸素を適切に供給できるようなシステムを提供していると言えるでしょう。

 

A_5

 

ヘムはミオグロビンやヘモグロビン以外にもいくつかのタンパク質に含まれており、シトクロムcもそのひとつです(図6)。シトクロムcはαヘリックスを4つ持ち、アミノ酸約100個からなる小さなタンパク質ですが、酸素呼吸を行う生物(細菌から哺乳類に至るまで)にとっては必須の生体分子です。

 

A_6

 

シトクロムcに含まれるヘムは、ミオグロビンやヘモグロビンのヘムbとは異なり、ヘムcという構造をとっています。ヘムcはタンパク質と硫黄原子を介して共有結合しています(図7)。ヘムについてより詳しい情報は文献(5)を参照して下さい。

 

A_7

 

ヘム以外にも補欠分子族にはさまざまなものがあり、図8と図9に主要なものを示しました。タンパク質と頻繁に結合したり分離したりする分子の場合、常時タンパク質に結合している補欠分子族と区別して補酵素とよぶこともあります。補欠分子族や補酵素はタンパク質以外の物質であり、同様な機能をタンパク質が持つ場合、それはサブユニットとよばれるタンパク質の4次構造の一部または独立の制御因子とみなされます。

 

A_8

 

 

A_2

 

補欠分子族・補酵素はビタミンと関係が深く、FMN(フラビンモノヌクレオチド)・FAD(フラビンアデニンジヌクレオチド)はリボフラビン=ビタミンB2から合成され、テトラヒドロ葉酸はメチルコバラミン(ビタミンB12)、ピリドキサルリン酸はピリドキサール(ビタミンB6)、NAD+・NADP+はナイアシンから合成されます。またビオチン=ビタミンB7、チアミン=ビタミンB1など補酵素そのものがビタミンである場合あります。

ミオグロビン・ヘモグロビン・シトクロムcはすべてαヘリックスとランダムコイルに近いペプチド鎖で構成されたタンパク質ですが、たとえばポリンのように、主要な構造がβシートで構成されているタンパク質もあります(図10)。ポリンは細胞膜にβシートが壁に相当するトンネルを埋め込んだような形で存在し、膜を通過する低分子物質の選別を行います。βシートはその通りシート状の構造や、かごのような構造をつくることもできます。

 

A_10

 

αヘリックスやβシートとは異なる、あるいはバリエーション的な規則構造をもつタンパク質も存在します。絹フィブロインは昆虫の繭の成分ですが、 Gly-Ser-Gly-Ala-Gly-Ala というアミノ酸配列の繰り返しを多数持っていて、図11のようにこの構造の逆順鎖と隣接することによって、まるでファスナーのように側鎖がかみ合って、繊維状の構造を形成しています。この側鎖が大小大小と交互に並ぶ特殊なファスナー様構造によって、絹は非常にちぎれにくい丈夫な繊維になることができます。

 

A_11

 

さまざまなタンパク質のアミノ酸配列およびその他の情報はデータベースに集積されており、誰でも閲覧することができます。たとえば pir=protein information resource (6)にアクセスして、上部のバーから search/analysis を選択してクリック、次の画面から text search を選択してクリック、そうすると選択と入力の窓がでてきますので、選択の方は protein name を選択、入力の方は globin と入力し、search をクリックします。検索結果画面の最初に Protein name and ID という欄がありますので、その HBA MOUSE をクリックすると、マウスのαグロビンに関する様々な情報が得られます。スクロールしていくと真ん中あたりにアミノ酸配列が記載してあります(図12)。

 

A_12

 

またはゲノムネットにアクセスし(http://www.genome.jp/ja/)、DBget search を開いて swiss prot というデータベースを探してクリックします。でてきた入力の窓に mouse globin と入力し、リストの中から HBA MOUSE を選択すると同様なデータが得られます。Swiss prot では、最後(ローエンドまでスクロールする)にアミノ酸配列の情報が記載されています。

このようなデーターベースの情報を用いて、すべての動物が持っているタンパク質であるシトクロムcのアミノ酸配列を、さまざまな動物について打ち出してみると、興味深いことがわかります(図13)。

 

A_13

 

左から3番目のアミノ酸をみてみますと、20種類の動物のうち16種類ではすべてバリンですが、七面鳥・鶏・鳩・王様ペンギンの4種類ではイソロイシンになっています。哺乳類はこのアミノ酸を魚類・両生類・爬虫類から引き継いでいますが、鳥類はある時点でバリンをイソロイシンに転換したということになります。これはたまたまなのか、何らかの意義があるのかよくわかりませんが、アミノ酸配列から進化系統について論ずることが可能であることが示唆されています。

もうひとつ興味深いのは4番目と46番目です。いずれもサル目のなかでクモザルだけが他と異なるアミノ酸になっています。ただし4番目の場合、爬虫類・鳥類・哺乳類のすべてがグルタミン酸(E)であるのにクモザルだけフェニルアラニン(F)となっています。対照的に46番目では爬虫類・鳥類・哺乳類のすべてがフェニルアラニン(F)なのに、クモザル以外のサル目の動物だけがチロシンとなっています。これだけのデータでも、サル目のなかでクモザルだけが独立したグループであることが示唆されます。一方で11~12番目をみると、クモザルを含めたサル目が、サル目以外の哺乳類・鳥類・爬虫類・魚類とは異なる共通配列を持っていることがわかります。

たった1種のタンパク質のアミノ酸配列を比較しただけでも、様々な生物の歴史や系統関係を調べる糸口になります。実際シトクロムcのアミノ酸配列を比較するだけで系統樹を記述することができたという論文もあります(7)。

 

参照:

1)John Kendrew et al., A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis., Nature vol. 181, pp.662 - 666 (1958); doi:10.1038/181662a0

2)Max Perutz et al., Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis., Nature vol. 185, pp. 416 - 422 (1960); doi:10.1038/185416a0

3)Reviewed by Richard E. Dickerson, "Max Perutz and the secret of life" by Georgina Ferry,
Protein Sci. vol. 17, pp. 377–379 (2008) doi:  10.1110/ps.073363908
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222719/

4)Myoglobin: A brief history of structural biology. Video presentation.
http://www.richannel.org/myoglobin-a-brief-history-of-structural-biology

5)Shigekazu Takahashi, and Tatsuru Masuda, Analysis of Heme in Photosynthetic Organisms. 低温科学 vol.67, pp. 327-337(2009)
http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/39163/1/67-048.pdf

6)http://pir.georgetown.edu/

7)Robert M. Schwartz and Margaret O. Dayhoff, Origins of prokaryotes eukaryotes mitochondria and chloroplasts. Science,
Vol. 199, Issue 4327, pp. 395-403 (1978)

|

« 2017年1月 | トップページ | 2017年3月 »