2017年6月21日 (水)

生物学茶話@渋めのダージリンはいかが77: ミトコンドリア

ミトコンドリアは「呼吸」について述べたところで、やや詳しくとりあげました(1)。ここではミトコンドリアという構造体について、もっと基本的なところからあらためて展開したいと思います。

ミトコンドリアを発見したのは、ミーシャーの協力者であり、「nuclein ヌクレイン」 を正しく 「nucleic acid 核酸」 と改名したリヒャルト・アルトマンです。ミトコンドリアはそのままでは光学顕微鏡による観察でサイズが小さすぎて見えないのですが、適切に固定・染色すれば細菌と同様観察することができます。アルトマンはその固定法や染色法を工夫して、あらゆる細胞の中に細菌のような生物が棲息していることを示唆しました。1890年頃のことです。アルトマンはそれをバイオブラストと命名し、シンビオント(共生体)であることを早くも予想していました(2、3)。

現在ではゲノムの解析などから、ミトコンドリアが αプロテオバクテリア にその起源を持つことは一般的に認められていますが、当時ではまさに荒唐無稽な説であり、アルトマンが言うところのバイオブラストは固定・染色のアーティファクトだとされて、全く相手にされなかったようです。そのためアルトマンは晩年は自室に引きこもって隠遁生活を余儀なくされたそうです(2、3)。アルトマンは21世紀になってから再評価されて、著書も復刻されました(図1)。彼はわずか48歳で他界していますが、その肖像は異様に年老いてみえます(図1)。悩みの多い人生だったことがうかがえます。

しかし当時から小数ながら彼を支持する研究者もいて、1898年にカール・ベンダはアルトマンのバイオブラストが、あるときには糸(mito in Greek)、あるときには顆粒(chondros in Greek)に見えることから、改めてミトコンドリオン(複数はミトコンドリア)と命名しました。さらに1900年にはレノア・ミカエリスが生細胞をヤヌス・グリーンという色素で染めてミトコンドリアを観察することに成功し、しだいにミトコンドリアはその存在を認められるようになりました(3)。

1960年代にはリン・マーギュリスがミトコンドリア=シンビオント説を再興し(4、図1)、現在ではそれが広く認められるようになりました。参照文献の著者がリン・セーガンとなっているのは、当時彼女がカール・セーガン(映画「コンタクト」の原作者:主演ジョディ・フォスターが素晴らしく、ストーリーもうまくできているのでおすすめします)の奥様だったからです。

A

ウィキペディアによると、ヒトの場合ミトコンドリアの総重量は体重の約10%を占めるとされています(5)。確かに肝臓の細胞などを観察していると、そのことが納得できるくらい頻繁にミトコンドリアをみつけることができます。ヒトの場合ひとつの細胞に、平均すると数百個のミトコンドリアが存在すると言われています。ただ酸素を運ぶのが仕事の赤血球では、ミトコンドリアが途中で酸素を使ってしまうのを防ぐために、ミトコンドリアを消滅させています(6、7)。消滅させるメカニズムは、大隅先生のノーベル賞授賞で有名になったオートファジーなどです(6、7)。角質化した細胞(表皮上層部・爪・毛など)にもミトコンドリアはみられません。

ミトコンドリアは図2のように、いちばん外側は進化上真核生物に由来すると思われる外膜に包まれ、その内側に細菌(シンビオント)由来と思われる内膜が存在します。内膜は外膜を裏打ちしているわけではなく、ときおり細胞内に突出する場合があり、この構造をクリステといいます(図2)。外膜と内膜の間やクリステには膜間腔という狭い空間があります。内膜の内側にはマトリックスと呼ばれる細胞質があり、核はなくミトコンドリアDNAがあります(図2)。ひとつのミトコンドリアには通常数コピーのミトコンドリアDNAがあるようです(5)。DNAは裸ではなくタンパク質でラップされている状態にあるようです。

A_2

ヒトを含めて多くの動物のミトコンドリアDNAに含まれる遺伝子は、リボソームRNAが2つ、トランスファーRNAが22、その他ATP合成酵素など13、計37個(8、図3)で大腸菌が約4000個の遺伝子を持つことを考えると、シンビオントが共生をはじめてから、進化の過程でほとんどの遺伝子がホスト(ヒト)のゲノムに移行または吸収されてしまったことが示唆されます。これはおそらくミトコンドリアが独立した生物として、勝手に増殖や機能発現を行わないように制御するためと思われますが、ここまで徹底的に移転させたのには、それなりの理由または特別なイベントがあったのかもしれません。ミトコンドリアの呼吸鎖複合体4つのすべては、ホストのゲノムにコードされているタンパク質がなければ活動できないので、ミトコンドリアにおけるATP産生はホストによって決定的に規制されています。

A_3

ミトコンドリアDNAは円形(サーキュラー)でかつ非常に小さいので、ウィルスやプラスミドが行うようなローリングサークル型DNA複製を行います。これは図4のように、トイレットペーパーを引き出すような形で、とりあえず片側のDNAだけをタンデムに複数コピー作成し、切断・二重鎖化・環状化はそのあとゆっくり進行させるというやり方です。

このやり方のひとつの利点は、1個のミトコンドリアに「変異が蓄積して不要なDNA」と「無傷のDNA」が共存した場合、ミトコンドリアが分裂したときに無傷のDNAをローリングサークルで多数複製し、それを娘ミトコンドリアに送り込むことができるということです。これは1種のクローニングで、そうしてできた娘ミトコンドリアは新品同様なので、卵母細胞などメスの生殖細胞ではこのようなミトコンドリアが使われていると考えられます(9)。

A_4

ミトコンドリアは静的な存在ではなく、しばしば融合や分裂を繰り返す動的な存在です。ミトコンドリアを縊り切って分裂させる装置の主役となるタンパク質は、細菌のチュブリンファミリーや真核生物のアクチンファミリ-ではなく、なんとダイナミンファミリーの Drp (哺乳類の場合)です(10、11、図5)。驚くべき事に彼らは過去の分裂装置を捨て去り、ホストの分裂装置も借りないで、全く新しい生き方を選びました。ホストの細胞内という環境の中で、ホストと自分自身の生存に有利な方向に進化してきたのでしょう。

しかも新しい分裂装置を獲得する中で、ミトコンドリア同士を融合するシステムを獲得しました(図5)。図5に示したダイナミンファミリーの Drp、 Mfn、Opa、の他にも多くのタンパク質が細胞融合にかかわっているようです(11)。獲得したと言いましたが、もちろんミトコンドリアが独自に進化したのではなく、これらのダイナミンファミリーの遺伝子はすべてホストのゲノムに存在しているので、ホストの進化といっても良いわけです。

ミトコンドリアの融合がなぜ有用なのかは、まだ完全に理解されているわけではありませんが、例えばDrp1の突然変異が重篤な新生児致死の原因となる、Mfn2 に変異が生じると末梢神経に障害をもつ神経変性疾患である Charcot-Marie-Tooth 病に罹患する、Opa1 の変異は視神経形成異常となるDominant Optic Atrophy の原因となるなどが報告されています(11、12)。ローリングサークルで大量のDNAを合成した場合、その事後処理のため大型のミトコンドリアが必要とも考えられます。心筋などでは多量のATPが必要とされるので、ミトコンドリアが巨大化し、かつびっしりと繋がって存在する場合があります(13)。

A_5

ミトコンドリアは現在ではリボソームRNA遺伝子やシトクロムc遺伝子の構造比較から、αプロテオバクテリアに起源するとされており、そのなかでもリケッチアあるいはその祖先に近いとされるペラジバクター(現在でも海洋に浮遊する普通種)が起源ではないかと言われています(5)。

話は変わりますが、ミトコンドリアは母親から受け継がれるので、ミトコンドリアDNAの塩基配列を解析し系統樹を作成すると、最初の一人の母親にたどりつくという研究があります。そのアフリカに住んでいたとされる母親はミトコンドリア・イヴと呼ばれることもあります。ただし聖書のようにその母親からすべての人類が生まれたわけではなく、たまたま20万年もの間、子供に必ず女性がいたというとてもめずらしい家系の頂点にいる女性ということです。ミトコンドリアが母親から受け継がれるというのは真実で、それなら精子のミトコンドリアは受精後どうなってしまうのでしょうか?

図6のように受精後しばらくは精子のミトコンドリアも受精卵の中で生きているのですが、融合や増殖は禁止されています。そして受精卵が分裂を繰り返し個体に発生していく過程で、父系のミトコンドリアはオートファゴソームという袋につつまれて分解(オートファジー)されてしまいます(14、15)。父系のミトコンドリアをすべて殺してしまうというのが生物にどんなメリットを与えるのかはよくわかっていません。卵子ではミトコンドリアの品質がきちんと管理されているが、精子では管理されていないということも考えられます。

A_6

ミトコンドリアは酸素を使って代謝を行っている上、鉄も多く含むため、活性酸素が発生しやすい条件が整っています。活性酸素はタンパク質・脂質・核酸などの生体物質と反応して変質させることがあります。したがってミトコンドリアは常に劣化する危険にさらされています。劣化したミトコンドリアは通常オートファジーによって排除されますが、それでも間に合わない場合、ミトコンドリア内部からシトクロムcというタンパク質が放出され、ホストの細胞ごと自殺に導くという究極のプロセスが発動します。

このプロセスはアポトーシスと呼ばれており、もともと細胞が修復不能なダメージを受けたとき、p53というタンパク質がシグナルとなってミトコンドリアに情報を伝え、それにミトコンドリアが反応してシトクロムcを放出するというメカニズムがあるのですが(図7)、それを利用してミトコンドリアの品質管理が行われることもあり得るということです。

真核生物はミトコンドリアからほとんどの遺伝子を奪い取りましたが、一方で自らの生死をミトコンドリアの指令によって決めるというメカニズムを構築しました。不思議な進化の物語です。

A_7

ミトコンドリア遺伝子の異常、ミトコンドリア品質管理の異常などが原因の疾患はいろいろ知られています。詳しくはウィキペディアのミトコンドリア病の項などを参照していただきたいですが、アルツハイマー病やパーキンソン病にミトコンドリアの機能不全が原因とおぼしきものがあるらしいそうで、これはちょっとした驚きです(16)。

参照

1)http://morph.way-nifty.com/grey/2017/05/post-d4be.html

2)Brian O'Rourke, From Bioblasts to Mitochondria: Ever Expanding Roles of Mitochondria in Cell Physiology., Front Physiol., vol. 1: article 7, pp. 1-4 (2010)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059936/pdf/fphys-01-00007.pdf

3)Carolyn Csanyi, Discovery of the Mitochondria, Sciencing (2017)
http://sciencing.com/discovery-mitochondria-20329.html

4)Lynn Sagan  On the origin of mitosing cells. J. Theoretical Biology vol. 14(3), pp. 255-274. (1967) PMID 11541392 doi:10.1016/0022-5193(67)90079-3

5)https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%88%E3%82%B3%E3%83%B3%E3%83%89%E3%83%AA%E3%82%A2

6)H. Takano-Ohmuro, M. Mukaida, E. Kominami, K. Morioka., Autophagy in embryonic erythroid cells: its role in maturation. Eur. J. Cell Biol., vol. 79, pp. 759-764 (2000).

7)S. Honda et al., Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat. Commun.  Jun 4; vol. 5: 4004. (2014) doi: 10.1038/ncomms5004
http://www.natureasia.com/ja-jp/jobs/tokushu/detail/329
http://www.nature.com/articles/ncomms5004

8)Jeffrey L. Boore, Animal mitochondrial genomes., Nucleic Acids Res., vol. 27 (8): pp. 1767-1780 (1999),  DOI: https://doi.org/10.1093/nar/27.8.1767
https://academic.oup.com/nar/article/27/8/1767/2847916/Animal-mitochondrial-genomes

9)Feng Ling, Rong Niu, Hideyuki Hatakeyama, Yu-ichi Goto, Takehiko Shibata and Minoru Yoshida, "ROS stimulate mitochondrial allele segregation towards homoplasmy in human cells", Molecular Biology of the Cell, vol. 27:10 pp. 1684-1693 (2016)  doi: 10.1091/mbc.E15-10-0690
http://www.molbiolcell.org/content/27/10/1684.full.pdf+html?sid=f44cb659-f009-4cb0-9842-939478677381
http://www.riken.jp/pr/press/2016/20160428_1/#note5

10)石原直忠、 融合と分裂によるミトコンドリアの形態制御の分子機構と生理機能 生化学 vol. 83, no.5, pp. 365-373 (2011)

11)伴 匡人,後藤雅史,石原直忠、ミトコンドリアの融合と分裂 その意義と制御機構 化学と生物 vol. 53, no.1, pp. 27-33 (2015)

12)H. R. Waterham, J. Koster, C. W. T. van Roermund, P. A. W. Mooyer, R. J. A. Wanders & J. V. Leonard:  A Lethal Defect of Mitochondrial and Peroxisomal Fission.  N. Engl. J. Med., vol. 356, pp.1736-1741, (2007).

13)http://www.cellimagelibrary.org/images/7567

14)佐藤美由紀  父由来のミトコンドリアが消されるしくみ 生命誌 vol.84-87 「つむぐ」 新曜社 pp. 100-105 (2016)
http://www.brh.co.jp/seimeishi/journal/085/research/2.html

15)佐藤美由紀、佐藤健  ミトコンドリアゲノムの母性遺伝のメカニズム オートファジーによる父性ミトコンドリアの分解 化学と生物 vol. 50 (7) pp. 479-480 (2012)
https://www.jstage.jst.go.jp/article/kagakutoseibutsu/50/7/50_479/_pdf

16)田中敦、Richard J Youle  ミトコンドリアの品質維持とパーキンソン病 細胞工学 vol. 29 (5) pp. 431-437 (2010)

|

2017年6月12日 (月)

生物学茶話@渋めのダージリンはいかが76: 細胞骨格3

これまでにも述べてきましたように、マイクロフィラメントや微小管は細胞骨格というより、細胞移動・細胞内輸送・細胞分裂などを実行するためのツールであり、変動も激しくそのためにATPやGTPを大量に使用します。それらと比較すると中間径繊維は安定で、形成にATPやGTPを必要としないので、細胞骨格という名前にふさわしいかもしれません。

中間径というのは、約6nm径のマイクロフィラメントと約25nmの微小管の中間のサイズ=約10nmという意味です。

図1はケラチンを例にとりましたが、Ⅰ型とⅡ型のケラチンがヘテロ2量体をつくり、そのヘテロ2量体がアンチパラレルに結合して4量体を形成し、それらが4本集まってプロトフィブリルを形成します。プロトフィブリルが多数集まって、中間径繊維ができあがります。このような構造を形成するためにATPやGTPは消費しません。

1a

中間径繊維も伸長や短縮を行いますが頻繁ではなく、基本的には細胞の形態を決めるのに役立っているとも言えますが、実際にはそんなに単純ではなくて、例えばケラチンの場合、その生理的意義は多岐にわたっており、角化によって水分の蒸発を防ぐ、細菌やウィルスの侵入を防ぐ、紫外線のダメージを吸収する、体温を維持する、捕殺や負傷を防ぐ、敵を突き殺す、指先に力を与える、蹄で体重をささえて走る、羽毛で空を飛ぶ、など数えきれません。

中間径繊維を構成するタンパク質は図2のように多数のグループがあり、通常それぞれのグループに複数の種類のタンパク質が所属します。グループを越えて複合的な繊維をつくることは一般的にはありません。ケラチンは上皮組織、ビメンチンは間充織、デスミンは筋肉、ニューロフィラメントは神経など特定の組織で発現するタンパク質が多いのですが、ラミンだけは例外的に広汎な組織にみられます。

2a

各タンパク質の分子構造をみていきますと、図3のように、すべてNH2側(N末)とCOOH側(C末)にαヘリックスやβシートを形成しない領域があり、中央にαヘリックスからなるロッド領域があるという形で、3つのドメインで構成されています。ロッド領域は2~3ヶ所の非αヘリックスリンカーで分断されています。

ロッド領域で多数の分子がパラレルに結合することによって太いケーブルが形成され、C末とN末がタンデムに結合して長いケーブルとなります。他の分子はすべて細胞質にありますが、ラミンだけは核にあるのでC末ドメインに核局在配列が存在します。(分子量は5万~7万です)。

3a

ケラチンは注意深くない生化学者には嫌われているタンパク質です。というのはラーメン店でスープを指にかけながら持ってくるウェイトレスのような研究者もいて、電気泳動槽のバッファに指をちゃぽちゃぽ浸しながら移動させることがあるので、そうなると皮膚のケラチンが検出されます。風呂に入っていない研究者だとフケが落下したりもします。

ケラチンにはSHが多く(髪が焦げると硫黄の臭いがします)、となりの分子のSHと結合してSS(ジスルフィド結合)を形成するので、分子の独立性は失われ、やや大げさに言えば毛髪・爪・角・鱗などはひとつで1巨大分子ということになります。ケラチンは肝臓のような柔らかい組織にもあるので、存在場所に応じて多くの種類があります。ヒトを含めて動物は数十種類のケラチン分子種すなわち遺伝子を保有しています。

ケラチンを発見したのは誰だか判りませんが、16世紀の中国の薬草学者李時珍(Li Shih-chen 図4)が治療に用いていたことが、私は未読ですが、彼の大著「本草綱目Compendium of Materia Medica」から読み取れるそうです(1、2)。最初にケラチン遺伝子の配列を決めたのはハヌコグルとフックスです(3、図4)。

4aa_2

これはややめずらしいことだと思いますが、たとえばヒトの場合、I 型ケラチングループの各遺伝子は第17染色体の特定部位に、II 型ケラチングループの各遺伝子は第12染色体の特定部位にぎっしりかたまって存在しています。しかも上皮ケラチン・毛根鞘ケラチン・毛&爪ケラチンはそれぞれクラスターを形成しています。偽遺伝子もいくつかみつかっています(図5)。ケラチンの大きな特徴として、表皮・毛髪・爪・角・鱗などの死細胞においても、垢・雲脂・生え替わりなどで外界に廃棄されるまで、その機能を果たしていることが上げられます。

5a_3

ビメンチン(分子量57,000)は発見者がはっきりしています。ドイツのマックス・プランク研究所の Franke WW, Schmid E, Osborn M, and Weber K. です(4)。オズボーンとウィーバー(夫妻)は生化学に手を染めた者なら誰でも使ったことがある米の飯のような「SDS-PAGE」という分析法を開発したことで有名な研究者です(図6)。フランケは近年はアンチ・ドーピングの研究者としても有名です(5、図6)。

6a

図7Aはマウス胎児の皮膚で私が撮影したものですが、ビメンチンが茶色に染まっています。表皮や毛包の上皮性組織はほとんど染まらず、間充織である真皮や毛乳頭はよく染まっていることがわかります。違いが明白なので、腫瘍が上皮性か間充織性かを判別するのに、ビメンチンの染色が使われています。図7Bは細胞内におけるビメンチンの分布です。核を包み込むような感じですが、ミトコンドリアや小胞体と結合する場合もあるようです(6)。

7a_2

ビメンチンの機能はかなり微小管が代替することができるようではっきりとわかっていませんが、細胞に弾力を与えたり、オルガネラを保護するような役割があるようです(6)。ビメンチンの遺伝子を欠損すると負傷からの回復が遅れるという報告もあります(7)。

デスミン(分子量53,500)は筋細胞に特異的に存在するタンパク質で、デスミンがつくる繊維は細胞骨格と言うより筋組織のパーツとしての役割を担っています。。ラザリデスのグループによって発見され(8)、遺伝子配列はLi Zhenlin(9)らによって解明されました。デスミン遺伝子を欠損させたマウスでは、正常な筋肉組織が形成されないことが明らかになっています(10)。デスミン遺伝子の突然変異によるヒト筋肉疾患も報告されていま(11)。

デスミン繊維は横紋筋細胞では図8のように配置されていて、筋原繊維のZディスク同士、Zディスクと筋鞘(サルコレンマ)のコスタメア、Zディスクとミトコンドリアや核を連結しています(12)。

8a

ニューロフィラメントは神経細胞に特異的に出現する中間径繊維で、発見者は F.C. Huneeus & P.F. Davison です(13)。構成しているタンパク質は3種類の分子量がかなり異なるアイソフォームで、それぞれNF-H (分子量 200-220 kDa)、 NF-M (分子量145-160 kDa)、 NF-L (分子量68-70 kDa)と命名されています。軸索の内径を広げて、神経伝達がスムースに行われるようにするという説があります(14)。

類似したタンパク質にα-インターネキシン(分子量66kDa)というのがありますが、図9のようにニューロフィラメントタンパク質(グリーン)とは異なる細胞(図9の場合は未分化な神経細胞 レッド)に発現する場合があります。神経細胞にはこの他にネスチン、ペリフェリンなどの中間径繊維形成タンパク質も発現します。

9a

最後にラミンですが、ラミンだけは核に局在しているタンパク質で、ラミン繊維は核ラミナと呼ばれる核膜を裏打ちしている構造となっています。初期の研究は Aaronson RP と Blobel G によって行われました(15)。10年後には遺伝子配列も明らかになりました(16)。

ラミンは真核生物が出現すると同時に生まれたのではないようです。ヒドラからヒトまですべての動物(後生生物)にあるのですが、植物・カビ・単細胞生物は持っていません。このことはラミンが動物独特の体細胞分裂に関与していることを示唆しています(17、18)。また核内での染色体の位置決めとかDNAの転写にも関与しているかもしれません(18)。

ラミンにはAタイプとBタイプがあり、それぞれ別の遺伝子にコードされています。CタイプとAタイプは同じ遺伝子にコードされており、選択的スプライシングによって生成されたものです。Cタイプも含めたAタイプは胎生期にしか発現しません。一方BタイプはB1・B2が別の遺伝子にコードされており、これらはすべての細胞に認められます。AタイプはBタイプから進化的に派生したと考えられています(17、18)。

とは言っても、Aタイプラミンの機能をBタイプラミンが代替できるわけではなく、マウスではAタイプラミンの欠損によって、成長が著しく遅れ、筋ジストロフィーが発生するそうです。またラミンBの欠損は致死です(18)。ラミンの局在は、参照に記載したサイトをご覧ください(19-22)。

参照

1)Compendium of Materia Medica:https://en.wikipedia.org/wiki/Compendium_of_Materia_Medica

2)The discovery of keratin. http://keratininformation.weebly.com/discovery.html

3)Hanukoglu, I.; Fuchs, E., "The cDNA sequence of a human epidermal keratin: divergence of sequence but conservation of structure among intermediate filament proteins". Cell. vol. 31 (1): pp. 243–252.  (1982) doi:10.1016/0092-8674(82)90424-X. PMID 6186381.

4) Franke WW, Schmid E, Osborn M, Weber K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci USA vol. 75: pp. 5034-5038 (1978)

5)http://www.sueddeutsche.de/sport/anti-doping-experte-werner-franke-in-der-zweiten-halbzeit-wirkt-sich-epo-fantastisch-aus-1.2379897

6)https://en.wikipedia.org/wiki/Vimentin

7)Eckes B, Colucci-Guyon E, Smola H, Nodder S, Babinet C, Krieg T, Martin P., "Impaired wound healing in embryonic and adult mice lacking vimentin.". Journal of Cell Science. vol. 113: pp. 2455–2462. (2000) PMID 10852824.

8) Izant JG, Lazarides E.,  "Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two-dimensional gel electrophoresis". Proc. Natl. Acad. Sci. U.S.A. vol. 74 (4): pp. 1450–1454. (1977) PMC 430794 Freely accessible. PMID 266185. doi:10.1073/pnas.74.4.145

9)Li Zhenlin, Alain Lilienbauma, Gillian Butler-Browneb, Denise Paulin., Human desmin-coding gene: complete nucleotide sequence, characterization and regulation of expression during myogenesis and development., Gene, vol. 78, Issue 2,  pp. 243–254 (1989)
http://www.sciencedirect.com/science/article/pii/0378111989902278

10)Capetanaki Y1, Milner DJ, Weitzer G., Desmin in muscle formation and maintenance: knockouts and consequences., Cell Struct Funct., vol. 22(1): pp. 103-116. (1997)
https://www.ncbi.nlm.nih.gov/pubmed/9113396

11)デスミンミオパシー,デスミン遺伝子の突然変異による心筋ミオパシーを伴った骨格筋ミオパシー: 
http://www.nejm.jp/abstract/vol342.p770

12)Panagiotis Koutakis et al., Abnormal Accumulation of Desmin in Gastrocnemius Myofibers of Patients with Peripheral Artery Disease: Association with Altered Myofiber Morphology and Density, Mitochondrial Dysfunction and Impaired Limb Function., Journal of Histochemistry and Cytochemistry (2015)
https://www.researchgate.net/publication/270705709_Abnormal_Accumulation_of_Desmin_in_Gastrocnemius_Myofibers_of_Patients_with_Peripheral_Artery_Disease_Association_with_Altered_Myofiber_Morphology_and_Density_Mitochondrial_Dysfunction_and_Impaired_Li

13)F.C. Huneeus. and P.F. Davison,  Fibrillar proteins from squid axons: I. Neurofilament protein, Journal of Molecular Biology, vol. 52, Issue 3, pp. 415-418 (1970).
http://www.sciencedirect.com/science/article/pii/0022283670904109#

14)https://en.wikipedia.org/wiki/Neurofilament

15)Aaronson RP, Blobel G., Isolation of nuclear pore complexes in association with a lamina. Proc Natl Acad Sci vol. 72: pp. 1007–1011 (1975)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2964183/

16)McKeon FD, Kirschner MW, Caput D., Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319: 463–468 (1986)

17)https://en.wikipedia.org/wiki/Lamin

18)Thomas Dechat, Stephen A. Adam, Pekka Taimen, Takeshi Shimi,and Robert D. Goldman, Nuclear Lamins., Cold Spring Harb Perspect Biol;2:a000547 (2010)

19)http://www.abcam.co.jp/lamin-b1-antibody-nuclear-envelope-marker-ab16048.html

20)http://www.abcam.co.jp/lamin-a-antibody-ab26300.html

21)https://www.thermofisher.com/jp/ja/home/life-science/antibodies/primary-antibodies/cell-marker-antibodies/lamin-ac-antibodies.html

22)http://ruo.mbl.co.jp/bio/dtl/A/?pcd=PM064

|

2017年6月 4日 (日)

生物学茶話@渋めのダージリンはいかが75: 細胞骨格2

真核生物のチューブリン・アクチン・ケラチンについて、基本的なことはすでに以前に述べています(1)。従ってここではもう少し進んだ話題、または別の話題を取り上げます。

まずチューブリンについて。チューブリンにはいずれも分子量約5万の α と β があり、通常 α と β が結合してαβ の形で存在します。このほか動原体にある γ 、中心体にある δ と ε などが知られています。微小管はαβ がタンデムに連結したプロトフィラメント(αβαβαβαβ・・・)同士がパラレルに11~16本結合して、中空のチューブを形成しています(図1)。微小管は細胞分裂の際には紡錘体を形成し(図2)、鞭毛・繊毛においても特殊な配列をとりますが(図2)、一般的には細胞質全体にひろがって存在します(図1)。

1a

2a

α  と β はヘテロダイマーとして行動し、αβαβαβαβ・・・という形でプロトフィラメントが形成されるので、プロトフィラメントには極性が存在します。しかもフィラメント同士はパラレルなので、微小管全体として極性が発生し、β側を+末端、α側を-末端と呼びます。β 側でフィラメントが伸長し、α 側で崩壊するという意味での+-なのですが、-末端は比較的安定で、+末端は-末端より頻繁に大規模な崩壊(カタストロフ)や修復(レスキュー)を繰り返していることがわかってきました(図3、参照 2、3)。

カタストロフの過程では、プロトフィラメントの末端からGTP結合チューブリンの脱落からはじまるフィラメントの短縮だけでなく、フィラメント同士の接着もはがれるようです(図3、参照 3)。

3a

このような微小管の動態を制御しているタンパク質群はMAPS(microtubule-associated proteins、4、5)、+TIPS(6)など非常に数多く、微小管の機能や制御の多彩さを示しています。あまりに複雑怪奇なので、私はこの方面になるべく関心を持たないようにしようと思っていました。それ故に、現在でもまだ未知の現象が多い宝の山かもしれません。

もうひとつ微小管の重要な役割は、細胞の中の道路として機能することです。ダイニンやキネシンはATPをエネルギー源として微小管上を袋(ベシクル)をかついで「歩行」し、細胞の隅々まで物質を届けます(図4)。神経細胞の軸索などは1mくらいの場合もあるので、ダイニンやキネシンのようなモータータンパク質を使わないと、必要な物質を末端まで供給できません。

4a

次はアクチンです。チューブリンを発見・精製・命名したのは戦後間もない日本の毛利秀雄でしたが、アクチンの発見者も当時科学では辺境の地であったハンガリーのブルノ・フェレンツ・シュトラウプでした。彼はハトの筋肉をすりつぶし、アセトンにいったん溶かして乾燥し、アセトンパウダーを作成して、そこからアクチンを抽出・精製しました。今でもアクチンの精製には、基本的にシュトラウプの方法が使われています(7)。

アクチンは単独の分子の場合G-アクチンともいい、G-アクチンが連結して線維を形成している場合F-アクチンといいます。Fアクチンにざまざまな制御タンパク質が結合してマイクロフィラメントが形成されますが、千差万別になって表現できないので、図5ではアクチンのポリマーとして示してあります。

マイクロフィラメントには微小管と同様+末端と-末端があり、ATPが結合したGアクチンが+末端に結合してフィラメントを伸ばし、ADP-Gアクチンが-末端から脱落してフィラメントを縮めるということになります。図5の下図をみると、マイクロフィラメントは細胞がある方向に伸長している場合、その伸長方向に平行に伸びている場合が多いことがわかります。また細胞膜近傍に顕著に観察されます。

5a

真核生物が誕生したとき、生物の生き方に関するひとつの革命が起きました。それは水中を浮遊したり泳いだりして生きるのではなく、固体に密着して生きるということです。そして移動には鞭毛ではなく、アメーバ運動を利用する生物が生まれました。アメーバ運動をするためには仮足が必要です。仮足には図6Bのような糸状仮足(フィロポディウム)と図6Cのような葉状仮足(ラメリポディウム)があります。いずれも仮足の先端部にはマイクロフィラメントが密集していて、マイクロフィラメントの伸長・短縮によって仮足が動いていることが示唆されます。

一方でマイクロフィラメントの基部には微小管が集結しています。あたかもマイクロフィラメントの枝を微小管の幹がささえているようなイメージです。糸状仮足が伸びるということは、マイクロフィラメントの+末端にGアクチンが次々と結合している状態に他なりません。

BCと異なり、Aではマイクロフィラメントが赤になっていることに注意してください。動いていないAのような細胞では、マイクロフィラメントは細胞膜の裏打ち構造を形成しています。細胞質のマイクロフィラメントは太い束にならず、細胞全体に分散しているように見えます。ただし方向はランダムではなく、パラレルな感じで分布しています。一方微小管(緑)は核の周辺に密集し、そこから部分的に細胞の辺縁に伸びているように見えます。

6a

アクチンは細胞の形態を決める細胞骨格としての役割以外に、細胞運動にもかかわっていますが、さらに細菌や古細菌ではFtsZが担っていた細胞分裂の主役も、真核生物ではアクチンが担うようになりました。図7のようにアクチンが分裂溝に集結しています。

7a

私達のような動物では、アクチンはミオシンという別グループのタンパク質と協力して筋肉という組織を形成して、これを使って歩行したり、キーボードをたたいたり、胃腸を動かしたり、心臓を収縮させたりしています。横紋筋にはサルコメア(筋節)という収縮の単位構造があり、この中にアクチン線維とミオシン線維が交互に配置されていて、その相互作用により筋収縮が行われています(図8)。

8a

このことは1954年に Andrew Fielding Huxley ら(8、図9)と Hugh Esmor Huxley ら(9、図9)によって同時に発表されました。しかしミオシン線維の中にアクチン線維が滑り込むといういわゆる「すべり説」は、現在でも基本的に正しいとされているにもかかわらず(10)、二人ともこの件ではノーベル賞を授与されていません。江橋節郎(図9)がカルシウムが筋収縮のシグナルであることを発見したにもかかわらずノーベル賞を授与されなかったのも、このことが影響していると思われます。

9a

江橋節郎は「カルシウムと私」という文のなかで、カルシウム説を学会で発表した当時の様子を次のように述べています:

「“座長のハンス・ウェーバーが 「討議の結果、カルシウム説は明らかに否定された」と宣言するや、娘のアンネマリー・ウェーバーは激昂して絶叫し、エバシは日本語でわめいた。皆は腹をかかえて笑った” 座長は、皮肉なことにアンネマリーの父であり、当時筋研究の泰斗として世界に知られるハンス・ウェーバーだった。アンネマリーが激昂して絶叫したのも本当だし、私がわめいたのも本当である。しかし、いかに興奮したとはいえ、日本語を使うはずがない。私の英語が誰も理解できなかったのである。この会議で、2人はまさにピエロだった。厳格な父親のウェーバーは、娘が変な日本人に引っ掛かって困っていると言っていたそうだ。」(11)。

勿論現在ではカルシウムがトロポニン・トロポミオシンを介して筋収縮を制御している・・・細胞内のカルシウム濃度が上昇する際に収縮し、下降するとき弛緩する・・・ということは明らかとなっています(図10)。

10a

「すべり」は当然ミオシンとアクチンの分子的相互作用によっておこるわけですが、そのメカニズムについては当初ミオシン分子がATPのエネルギーを用いて変形し、そっれに伴ってアクチンが動くという「首振り説」(図8)が有力でしたが、その後柳田敏男らがミオシン分子滑走モデルを提出し(12、図8)、激烈な論争になりました。

私には詳細はよくわかりませんが、首振りのような動作ではなくても、ミオシンの分子変形がアクチンの動きに関与していることは否定しがたい事実のようです(13、14)。ただし1個のミオシン分子の変形によって、接するアクチンの移動する距離を説明することはできないので、さらなる研究が必要です(15)。

参照

1)http://morph.way-nifty.com/grey/2017/02/post-ef6b.html
  http://morph.way-nifty.com/lecture/2017/02/post-2862.html

2)Tim Mitchison & Marc Kirschner, Dynamic instability of microtubule growth., Nature vol. 312, pp. 237 - 242 (1984); doi:10.1038/312237a0

3)伊藤知彦: 微小管 動態の基礎 in  「細胞骨格と細胞接着」 蛋白質 核酸 酵素 vol. 51, pp. 529 - 534 (2006)

4)小谷 亨、松島一幸、久永眞市: 微小管結合タンパク質の構造と機能 蛋白質 核酸 酵素 vol. 51, pp. 535 - 542 (2006)

5)https://en.wikipedia.org/wiki/Microtubule-associated_protein

6)Anna Akhmanova and Michel O. Steinmetz, Microtubule +TIPs at a glance.,  J Cell Sci., vol. 123(10), pp. 3415 - 3419 (2010)
https://pdfs.semanticscholar.org/3f9f/197f841548e9cd9f886ca76e58bfe77b7942.pdf

7)水野 裕昭、山城 佐和子: アセトンパウダーからのATP, ADPアクチンの精製 日本細胞生物学会HP
http://www.jscb.gr.jp/protocol/protocol.html?id=25

8)HUXLEY AF, NIEDERGERKE R., Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. Vol. 22;173(4412): pp. 971-973. (1954)

9)HUXLEY H, HANSON J., Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. Vol. 22;173(4412): pp. 973-976. (1954)

10)W. O.Williams, Huxley’s Model of Muscle Contraction with Compliance., Journal of Elasticity, Vol. 105, Issue 1,  pp. 365–380 (2011)
http://www.math.cmu.edu/~wow/papers/complmusc.pdf

11)生命誌ジャーナル12号 JT生命誌研究館

12)http://wedge.ismedia.jp/articles/-/1140

13)上田太郎、ミオシン首振り説:部位特異的変異による検証から構造遺伝学によるメカニズム解明へ。生物物理 Vol. 37 No.1 pp.331-335 (1997)

14)Lauren J. Dupuis, Joost Lumens, Theo Arts, Tammo Delhaas, Mechano-chemical Interactions in Cardiac Sarcomere Contraction: A Computational
Modeling Study., PLOS Computational Biology,  | DOI:10.1371/journal.pcbi.1005126 October 7, (2016)

15)http://brownian.motion.ne.jp/16_FlexibleMolMachine/03_IsMascleMorter.html

|

2017年5月25日 (木)

生物学茶話@渋めのダージリンはいかが74: 細胞骨格1

1280pxtaraibune1船は船の格好をしているので、漕げば思う方向に進むのであって、これが不定形のふにゃふにゃとしたものであれば、乱流が発生して漕ぐのはとても困難になるでしょう。

左の写真はウィキペディアから佐渡のたらい船ですが、実際にこれを漕いでみた方は、その困難さに驚いたのではないでしょうか?

https://www.tripadvisor.jp/ShowUserReviews-g1021355-d1947724-r278970072-Rikiya_Kanko_Kisen-Sado_Niigata_Prefecture_Chubu.html)。

ですから細菌がピンと張った船あるいは棒状の細胞であることは重要です。彼らは唯一の複雑で高級な備品である鞭毛を動かし、栄養物質を求めて泳ぎます。細菌はアメーバのような方法で移動することはできません。

脂質で構成されている細胞膜ではこのような堅さは実現できません。そこで細菌は糖ペプチドや糖脂質でできた細胞壁で細胞を被って、丈夫でかつ鞭毛で泳ぎやすい細胞を作り出しました。細菌にも細胞骨格があるという話を聞いたときには、おそらく硬い屋根のような構造には梁が必要だろうと思ったわけですが、事はそう単純ではありませんでした。

真核生物の細胞骨格には、チューブリン系・アクチン系・ケラチン系の3つのグループのタンパク質群が存在します。細胞骨格という名前からは骨のような硬い物質が連想されますが、そうではなく、分子が重合して繊維状の構造を形成できる物質と考えた方が近いと思います。ひとつ注意したいのはカイコの繭やクモの糸などは繊維状のタンパク質重合体ではありますが、細胞の外に出て機能するものは細胞骨格とは言いません。

細菌の細胞骨格研究の萌芽は、1991年のバイとルトケンハウスによる FtsZ の局在に関する研究でした(1)。どうして真核生物に比べて、細菌の細胞骨格研究が著しく遅れたかというと、それは細菌におけるタンパク質の局在は、光学顕微鏡で研究するのはターゲットが小さいためなかなか難しく、電子顕微鏡に頼らざるを得なかったからです。電子顕微鏡によるタンパク質の同定(免疫電顕)には多くの技術的制限があって、一筋縄ではいかないことが多いのです。

バイとルトケンハウスの研究をまとめたのが図1(左)です。真核生物の収縮環にアクチンが集合するのはわかっていたので(図1右)、細菌型アクチンかと色めき立ったのですが、真相はもっと驚くべきことでした。デブール(図1)らとレイチャンドゥーリらは1992年、FtsZ がアクチンではなくチューブリンのホモログであることを発表したのです(2、3)。細菌ばかりでなく、一般的に古細菌でもFtsZ を使って細胞分裂を行うようです(4)。

A

FtsZ は20世紀の中頃、広田幸敬が細胞分裂の温度感受性突然変異体を多数作ったなかに、この遺伝子のミュータントがみつかっていました(5)。これがチューブリンのホモログだなんてきっと墓の中で驚いていることでしょう。ようやく1990年代になってその研究が端緒についたわけです。まだ FtsZ がどのように分裂溝形成にかかわっているかということは完全には解明されていませんが、細胞膜と結合するためのアンカーや制御因子の研究は進んでいるようです。この遺伝子を分裂酵母に組み込んで発現させると、やはり分裂溝に集まってくるそうなので(6)、分裂溝となんらかの関係があることは確からしいです。

FtsZ は葉緑体にも存在し、驚くべきことに真核生物においては、真核生物にしかないダイナミンファミリーのタンパク質が太古のタンパク質 FtsZ と共同して分裂装置を形成するそうで、まさに10億年の時空を越えたコラボレーションです(7)。

私達ヒトのミトコンドリアはもはや FtsZ を持っていませんが、原生動物・藻類・粘菌など古参の真核生物のミトコンドリアは FtsZ を使って分裂しているようです(8)。

クインとマーゴリンは、大腸菌の細胞分裂時における FtsZ の局在をGFPラベルで示した美しい写真を、教育用に提供してくれているので図2に示しました。平常時にはラベルが分散しているのではっきりとはみえませんが、細胞分裂時には分裂溝に集結するのでよく見えます。

A_2

図3は β-チューブリンと FtsZ の分子構造を比較したものですが(10)、素人目にもかなり似ている部分(サークル内)があるように思いました。

Photo_2

このようにしてチューブリンのホモログはみつかりました。ではアクチンに類似した細菌タンパク質もあるのでしょうか? このことが判明したのは21世紀になってからでした。

MreB というアクチンスーパーファミリーに属するタンパク質が細菌に存在することを発見したのはフシニータ・ファン・デン・エントらでした(11)。アラインメントの結果、MreB は真核生物のアクチンとはわずか15%の一致でしたが、重合してケーブルを形成することや、細胞の形態を維持するために必須であること、3次元構造がよく似ていること(図4、参照12)などから、ホモログであると考えられています。MreB を欠損すると、大腸菌は棒状(ロッド状)の形態を失って球形の大きな細胞になり、娘細胞への染色体の分配がうまくできなくなって致命的となります(13)。

A_4

MreB は細胞膜直下でコイル状やリング状に重合したケーブルとなって、細菌のロッド状構造を維持することができます(図5、14)。これはシュラフからテントへの昇格に例えられるでしょう。細胞分裂の際には真核生物の紡錘糸のような役割も果たしているようです(15)。しかしそれではチューブリンとアクチンの役割が細菌と真核生物で入れ替わったということになり、奇怪なミステリーです。ただチューブリン系は重合にGTPのエネルギーを、アクチン系はATPのエネルギーを使うという方式は十億年以上の時を越えてほぼ維持されているようです。

A_5

MreB そのものは膜結合タンパク質ではないため、細胞膜直下に局在するためには他のタンパク質がアシストしてあげなければなりません。ファン・デン・エントらは図6のようなモデルを提出しています(16)。このモデルではRod Z というタンパク質が MreB と膜貫通タンパク質の両者と結合して、クランプの役割をはたしていることになります。

細菌のアクチンホモログの研究は21世紀になってからはじまったので、まだまだ解決しなければ行けない課題は多いと思います。ただこの種の研究はいまやカルトな趣味の世界にはいりつつあり、そのような世界で生きようとする人々には好ましい状況です。それでもこれは生身の生物についての科学ですから、どんなところに人類に有用な知識が潜んでいるかわかりません。

A_6

細菌のアクチンホモログはMreBだけではなく、同じオペロンに含まれる MreC、MreDなどのほか、ParM というグループもみつかっています(図4、図7、12)。ParM の役割としては、細胞分裂の際に図7のようにプラスミドDNAを細胞の両端に押し分け、片方の娘細胞に偏ってプラスミドが分配されないようにすることがわかっています(図7、参照10、12)。

図7の右側はParM がプラスミドDNAに結合したParRと結合していることを示しています。さらにフリーのParMは、ATPのエネルギーを使ってParM線維にDNA側から結合し、線維を伸長させることを示唆しています。

ガスパール・ジェケリーはその総説の中で、原核生物のタンパク質ネットワークは1)プラスミドのパーティショニング(ParMの語源)、2)細胞分裂のための装置、3)細胞膜の合成と細胞の骨組み のために発達してきたと述べています(16)。

A_7

古細菌の細胞骨格研究はあまり進んでいないようですが、クレナクチンという真核生物のアクチンとよく似たアクチンホモログがみつかっています(18、19)。アクチンホモログの分子進化はおおまかには図8のようになっています。FtsA は分裂溝に出現するタンパク質です。

A_8

最後にケラチン系のタンパク質についてみてみましょう。このグループがつくるケーブルは中間径線維と呼ばれています。真核生物の場合、アクチンがつくるケーブルはマイクロフィラメントと呼ばれており、径は5~9nm。チューブリンがつくるケーブルは微小管と呼ばれていて、径は約25nm。中間径繊維のケーブルの径は8~12nmで、マイクロフィラメントと微小管の中間的なサイズなのでそう呼ばれているわけです。

真核生物の中間径繊維をつくるタンパク質は多様で、ケラチン・ビメンチン・ニューロフィラメント・核ラミンなどがあります。細菌にもこのグループのタンパク質はみつかっていて、それはクレセンチンです(20、21)。細胞がロッド状でなくジェリービーンズのような格好をした菌、あるいはヘビのようにくねくねした形態の菌に、図9のように片側に偏った感じで配置されています。クレセンチンがあるサイドはテンションがかかっていて縮み、逆サイドは延びるということになります。両サイドが交互に重合と解離を繰り返せば泳げるかもしれません。

クレセンチンはウィキペディアによると、ケラチン19のアミノ酸配列を比較すると25%が一致し40% の領域で相同性が認められるそうです。核ラミンと比較しても同様なホモロジーがあるそうで、ケラチン系タンパク質の祖先であることは間違いないと思われます。

C_2

脂質二重層でDNAを被えば、それは生物としての出発点といえるでしょうが、脂質だけの細胞膜は脆弱すぎるという問題があります。ですから細胞膜を多糖類やタンパク質で裏打ちしたり、その工事のために足場をつくったりするために細胞骨格が必要であったとは容易に想像できます。しかしジェケリーが言うように(17)、とりわけプラスミドDNAをうまく娘細胞に分離するために必要だったという考え方にもうなづけるものがあります。例えば図8の分子系統図をみるとMreBやFtsAより、ParMファミリーの方が古いタンパク質とされています。

参照

1)Erfei Bi and Joe Lutkenhaus, FtsZ ring structure associated with division in Escherichia coli., Nature vol.354, pp.161-163 (1991)
https://www.ncbi.nlm.nih.gov/pubmed/1944597
https://www.researchgate.net/publication/21210591_FtsZ_ring_structure_associated_with_division_in_Escherichia_coli

2)de Boer P., Crossley R., Rothfield L., The essential bacterial cell division protein FtsZ is a GTPase., Nature vol. 359, pp. 254-256 (1992)
https://www.ncbi.nlm.nih.gov/pubmed/1528268

3)RayChandhuri D., Park J. T., Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature vol. 359, pp. 251-254 (1992)
https://www.ncbi.nlm.nih.gov/pubmed/1528267

4)http://tdl.libra.titech.ac.jp/hkshi/xc/contents/pdf/117098745/12

5)https://ja.wikipedia.org/wiki/FtsZ

6)Ramanujam Srinivasan et al., The bacterial cell division protein FtsZ assembles into cytoplasmic rings in fission yeast. Genes and Development vol. 22, pp.

1741-1746 (2008)
http://genesdev.cshlp.org/content/22/13/1741.full

7)宮城島進也、葉緑体の分裂制御機構とその進化 植物科学最前線 vol. 5, pp. 21-36 (2014)

8)Kiefel BR1, Gilson PR, Beech PL., Diverse eukaryotes have retained mitochondrial homologues of the bacterial division protein FtsZ., Protist.  vol. 155 (1), pp. 105-115. (2004)
https://www.ncbi.nlm.nih.gov/pubmed/15144062

9)Qin Sun and William Margolin, FtsZ Dynamics during the Division Cycle of Live Escherichia coli Cells.,  J Bacteriol., vol. 180 (8):  pp. 2050–2056. (1998)

10)Yu-Ling Shih and Lawrence Rothfield, The bacterial cytoskeleton., Microbiol Molec Biol Reviews pp. 729-754 (2006)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1594594/figure/f1/

11)Fusinita van den Ent, Linda A. Amos & Jan Lowe, Prokaryotic origin of the actin cytoskeleton. Nature vol. 413, pp. 39-44 (2001)
http://www.ibt.unam.mx/computo/pdfs/cursosviejos/bcelular/procaryoticoriginofactin.pdf

12)Joshua W. Shaevitz and Zemer Gitai, The Structure and Function of Bacterial Actin Homologs, Cold Spring Harb Perspect Biol, 2:a000364 (2010)
https://www.ncbi.nlm.nih.gov/pubmed/20630996

13)Kruse T, and Gerdes K., Bacterial DNA segregation by the actin-like MreB protein. Trends Cell Biol. vo. 15(7), pp. 343-345. (2005)

14)Figge RM, Divakaruni AV, Gober JW., MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol. Vol. 51(5), pp. 1321-32. (2004)
https://www.ncbi.nlm.nih.gov/pubmed/14982627

15)生物史から、自然の摂理を読み解く 
http://www.seibutsushi.net/blog/2008/09/566.html

16)Fusinita van den Ent, Christopher M Johnson, Logan Persons, Piet de Boer, and Jan  Löwe, Bacterial actin MreB assembles in complex
with cell shape protein RodZ., EMBO J., Vol. 29(6), pp. 1081–1090 (2010)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845281/

17)Gaspar Jekely, Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles. Cold Spring Harb Perspect Biol, 6:a016030 (2014)

18)Thierry Izoré, Danguole Kureisaite-Ciziene, Stephen H McLaughlin,  Jan Löwe,  Crenactin forms actin-like double helical filaments regulated by arcadin-2, eLife Vol.5:e21600 (2016)
https://elifesciences.org/content/5/e21600

19)Tatjana Brauna et al., Archaeal actin from a hyperthermophile forms a single-stranded filament.,Proc NAS USA vol.112, pp. 9340-9345 (2015)
http://www.pnas.org/content/112/30/9340.full

20)Nora Ausmees, Jeffrey R Kuhn, Christine Jacobs-Wagner, The Bacterial Cytoskeleton. An Intermediate Filament-Like Function in Cell Shape. Cell,Vol.

115, Issue 6, pp. 705–713, 12 December (2003)
http://www.cell.com/cell/fulltext/S0092-8674(03)00935-8?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867403009358%3Fshowall%3Dtrue

21)Ausmees N, Intermediate filament-like cytoskeleton of Caulobacter crescentus. J Mol Microbiol Biotechnol. 2006;11(3-5):152-8.

|

2017年5月11日 (木)

生物学茶話@渋めのダージリンはいかが73: 細胞膜

生命の起源をたどっていけば様々な触媒物質上での生化学的化学反応にたどりつくのでしょうが、これが生物であると言うためには外界との仕切りが必要であり、それは細胞膜以外にありません。しかし意外なことに細胞膜の基本的な構造がわかってきたのは20世紀終盤でした。

現在では細胞膜は脂質二重層からなることがわかっていますが(図1)、最初に脂質二重層仮説を提出したのはゴーターとグレンデルです。1925年のことでした。彼らは赤血球から脂質を抽出し、それが水面を完全に覆ったときの面積を赤血球の表面積で割るとほぼ2という値が得られたことから、赤血球の細胞膜は脂質二重層で構成されていると考えました(1)。

その後 Davson-Danielli のモデル、すなわちタンパク質が脂質二重層でサンドイッチされているというような考え方もありましたが(2)、結局シンガーとニコルソンが1972年に提出した流動体モザイクモデル=脂質二重層モデル(3)が、その後多くの検証を得て現在では基本的に正しいと考えられています(4)。

デジタル大辞泉では「(生体膜は)リン脂質分子の二重層からなり、親水性の部分を外側に向け、疎水性部分を内側に挟み込むように向い合い、たんぱく質分子がその表面や内部もしくは上下に貫通するようにモザイク状に入り混じっており、脂質・たんぱく質ともに流動性をもつ」と説明されています。模式図で示すと図1のようになり、電子顕微鏡でも二重層を見ることができます。

A

A_2

ニコルソンはこのモデルが認められたことで有名になりましたが、もうひとつ彼を有名にした事件があります。余談となりますが、このことに触れないわけにはいきません。ニコルソンは Ph D であり、経歴を見ると医学を学んだ形跡はありませんが、次第に医学に傾斜し、湾岸戦争症候群の原因解明に主導的な役割を果たしました。

彼とナンシー夫人は、湾岸戦争症候群の主要な原因が、遺伝子改変が行われ生物兵器として用いられたマイコプラズマであることを、妨害を乗り越えてつきとめ多くの患者を救いました(5-9)。しかしそのために盗聴やさまざまな生活妨害を受け、そのうち研究を停止させられるという目に遭いました。結局カリフォルニアに自分で分子医学研究所を設立して、そこで研究を続けることになりました。

生物兵器をいったん世の中に出してしまうと、それを完全に回収することはできません。したがっていつパンデミックが発生してもおかしくない事態になります。慢性疲労症候群などの原因がマイコプラズマである可能性は高く(10)、これが生物兵器由来である可能性は否定できないと思います。また生物兵器を使用するには、テスト=人体実験をしなければならないので、政府にとっては調査・研究が行われることは甚だまずい事態となります。ニコルソン夫妻は有名人だったので消されずにすんだのだと思います。

さてこれまでにも述べてきましたが、細胞膜を構成する脂質は主にフォスファチジルセリン、フォスファチジルエタノールアミン、フォスファチジルコリン、スフィンゴミエリン、グリコシルセレブロシドの5種類です(図3)。

すべて親水性の頭部と疎水性の尾部という構造になっており、同じ方向を向いた層と、逆向きの層とが合体して脂質二重層を形成しています(図1)。脂質の比率は生物種・細胞によって異なり、たとえば大腸菌ではほとんどがフォスファチジルエタノールアミンであり、ヒト赤血球ではフォスファチジルセリン・フォスファチジルエタノールアミン・フォスファチジルコリン・スフィンゴミエリンの4種がバランス良く配合されています(11)。脳神経系ではグリコセレブロシドの比率が高まるでしょう。

A_3

シンガーとニコルソンの流動体モザイクモデルは細胞膜一般についてのモデルですが、細胞膜はどこでも均一ではなく、マイクロドメインが存在するということは電子顕微鏡を用いた観察から、1950年代にはすでに話題となっていたそうです(12)。しかしそれが脂質ラフトという名で、機能的にも重要であることが認識されてきたのは20世紀末のことです(13)。ラフトというのはいかだを意味し、細胞膜という湖にいかだが浮かんでいるということなのでしょう。この「いかだ」は通常の脂質以外にコレステロールとタンパク質が多く含まれていることがわかっています(14)。

図4にウィキペディアに出ていた脂質ラフトのイラストを転載します。ラフトには膜貫通タンパク質やグリコフォスファチジルイノシトールという柄のついた傘のようなタンパク質、さらに糖タンパク質、糖脂質、コレステロールなどが集結しています。通常の部分が細胞を外界と仕切る壁とすれば、ラフトは細胞膜の特別な機能を果たす場所と言えます。コレステロールはこの特殊な場所が他の場所と混じり合わないよう、ラフト領域の流動性を低下させていると考えられます(15)。


A_4
膜貫通タンパク質は次の3つのグループに分けられます。

1.1回貫通タンパク質
2.イオンチャンネル
3.7回貫通タンパク質(Gタンパク質共役受容体)

まず1回貫通タンパク質ですが、多くはチロシンキナーゼ活性またはセリン/スレオニンキナーゼ活性をもつ酵素です。細胞外からシグナル因子がくると、それの受容体となって結合し、構造変化を起こしてチロシンキナーゼ活性を発動させ、細胞内の因子をリン酸化してなんらかの効果を得るという機能を持つタンパク質です。インスリン受容体、上皮成長因子(EGF)受容体、神経成長因子(NGF)受容体、血管内皮細胞増殖因子(VEGF)受容体、インスリン様増殖因子(IGF)受容体、繊維芽細胞増殖因子(FGF)受容体、肝細胞増殖因子(HGF)受容体、血小板由来成長因子(PDGF)受容体、各種サイトカイン受容体、各種細胞接着因子受容体など多くのタンパク質がこのグループに所属します(16)。

代表例としてインスリン受容体を図5に示しました。ちなみにインスリンがどのようにインスリン受容体と結合するかが解明されたのはごく最近のことです(17)。図をみると一見2回貫通しているように見えますが、細胞外でダイマーを形成しているわけで、それぞれの酵素は1回貫通です。ただしダイマーのうち片方にしかインスリンは結合しません。インスリン結合によって受容体は活性化され、細胞内のチロシンキナーゼ活性によってIRS-1という因子がリン酸化され、さまざまな反応が連鎖しておこります。この結果グルコースが細胞にとりこまれ血糖値は低下します(図5)。

A_5

次にイオンチャンネルですが、細胞には適切なイオン濃度があって適宜調節が必要です。もちろん最適なイオン濃度はイオンによって異なりますし、細胞によっても異なります。ロデリック・マッキノンら(図6)は放線菌のカリウムチャンネルタンパク質を結晶化して構造解析することに成功しました(18)。

A_6

カリウムチャンネルは1回膜貫通タンパク質であり、中心に穴が開いていてイオンが通過できる構造になっています(図7)。

A_7

ただし図8左図のようにイオンを選別するフィルター様の構造があり、ここのドメインにうまく結合しないとチャンネルを通過できないようになっているため、各イオンチャンネルは特定のイオンだけを選別して通す機能を持っています。イオンチャンネルはミトコンドリアのプロトンポンプのようにエネルギーを消費してイオンをくみ出したりはせず、単に濃度勾配で移動させるだけですが、開閉によってイオン濃度を調節することができます。開閉のシグナルには、膜電位・リガンド・機械刺激・温度・リン酸化などさまざまです(19)。

水を選択的に透過させるチャンネルもみつかっています。解明したのはピーター・アグレらで(図6、参照20)、アクアポリン(水チャンネル)と呼ばれるこのタンパク質は6回膜貫通タンパク質であり、イオンチャンネルとは全く素性の異なる物質です。他の膜貫通タンパク質と異なり、N末とC末の両者が細胞内にあります。水チャンネル=アクアポリンには多数の種類があり、水以外の物質を通過させるものもあるようです(21)。

A_8

マッキノンとアグレは2003年のノーベル化学賞を受賞しました。マッキノンは医学への道を棄てて基礎科学に転じた人ですが、東洋系の奥さんのおかげでポストドク時代の困難な生活を乗り切ることができたそうです(22)。基礎科学では飯が食えないので医師に転じたという知人・友人は多いですが、逆のケースはほとんど知りません。フランソワ・ジャコブが戦傷で医師への道を断念して基礎科学に転じたというのは有名な話ですが。一方アグレはしばしばキューバに渡航して、学会や講義活動を行ったばかりでなく、フィデル・カストロ首相と会ったりして外交的活動にも関心があったようです。また北朝鮮にも渡航して学術交流を行うなど、学問を通した国際交流にも熱心で、一時は上院議員を志したこともあるそうです。

膜貫通タンパク質の最後は7回膜貫通タンパク質です。その構造を二次元的に展開したのが図9ですが、細胞膜を7回貫通し、細胞外にN末端、細胞内にC末端があります。7回膜貫通タンパク質はすべてGタンパク質共役受容体です。すなわちGタンパク質がループを形成している青色などの部分に結合すると、Gタンパク質は結合していたGDPをリリースしGTPと結合します。同時に、Gタンパク質はサブユニットGαとGβγに分離し、それぞれの機能を発揮します。その後GαはGTPを加水分解し、そのエネルギーを用いてGβγと再結合します。

すなわち7回膜貫通タンパク質は外界からの情報を受け取る、すなわち細胞外にある受容体にリガンドが結合すると、細胞内部分がGタンパク質と結合して、Gタンパク質が活性化されて、生化学反応のカスケードが起動されるという機能を持っています。

A_9

7回膜貫通タンパク質=Gタンパク質共役受容体はメジャーなホルモンなどの受容体なので、市販の薬の約60%がこのグループをターゲットとしていると言われています。主なものを図10に示しました。ほぼ同じ長さの7本のαヘリックスが円筒状の構造を形成しているタンパク質であることがわかります。このほかにも嗅覚受容体・光受容体など非常に生理的に重要な物質も含まれています。

A_10

Gタンパク質共役受容体(GPCR=G protein-coupled receptor)の研究で、ブライアン・コビルカとロバート・レフコウィッツの2名が2012年のノーベル化学賞を共同で受賞しています(図11)。

A_11

細胞膜を職場としているタンパク質には、膜貫通タンパク質以外に、特殊なアンカー(GPIアンカー、GPI:Glycosylphosphatidylinositol )で膜とつながり、膜の外に突き出た状態で機能するものがあります(図4)。GPIアンカーの構造は図12のようなもので、タンパク質-フォスフォエタノールアミン-3マンノース&Nアセチルグルコサミン-フォスファチジルイノシトール-2脂肪酸という順につながっています。最後の脂肪酸が細胞膜に埋め込まれている部分です。GPIアンカー型タンパク質は原生生物・酵母・カビ・粘菌・植物・無脊椎動物を含む真核生物全域でみつかっています(23)。

A_12

細胞膜の外側で酵素を働かせようとした場合にGPIアンカーが使われるようです。リストを図13に示しますが、酵素の他、細胞接着、補体の制御、神経系のレセプターなどの機能があるようです。FGFの活性を制御していると言われるグリピカンファミリーもこのグループに属します(24)。Gタンパク質共役受容体のグループに比べると地味な感じですが、薬剤のターゲットとして注目されているようです。

A_13

参照

1) E. Gorter and F. Grendel, On bimolecular layers of lipoids on the chromocytes of the blood., J Exp Med. vol. 41(4): pp. 439-443. (1925)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2130960/pdf/439.pdf

2)J. Danielli and H. Davson, A contribution to the theory of permeability of the films.,  J.Cellul.Physiol. vol. 5, Issue 4, pp. 495-508 (1935)

3)S. J. Singer, and Garth L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes., Science. vol.175 (no.4023): pp.720-723 (1972)
http://www.jstor.org/stable/1733071?origin=JSTOR-pdf&seq=1#page_scan_tab_contents

4)Garth L. Nicolson, The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1838, Issue 6,  pp. 1451–1466 (2014)
http://www.sciencedirect.com/science/article/pii/S0005273613003933

5)Garth L. Nicolson, Ph.D. and Nancy L. Nicolson, Ph.D. Chronic Fatigue Illnesses Associatedwith Service in Operation Desert Storm. Were Biological Weapons Used Against our Forcesin the Gulf War?  TOWNSEND LETTER FOR DOCTORS 1996; 156:42-48.
http://www.immed.org/GWI%20Research%20docs/06.26.12.updates.pdfs.gwi/TownsendLettGWI1996.pdf

6)湾岸戦争症候群に罹患した復員軍人の「家族」の血液から生物兵器?を続々検出
http://www.asyura2.com/0311/war41/msg/282.html

7)白血球から検出のマイコプラズマにエイズウイルスの被膜遺伝子配列:生物兵器の証拠文献
http://www.asyura2.com/0311/war41/msg/582.html

8)米軍病理学研究所へようこそ!:これが米国のばら撒いた「免疫不全」マイコ生物兵器:全訳付き
http://www.asyura2.com/0311/war41/msg/707.html
http://www.asyura2.com/09/revival3/msg/141.html

9)ニコルソン博士夫妻に驚くべき妨害
http://satehate.exblog.jp/11649060/

10)Endresen, G.K., Mycoplasma blood infection in chronic fatigue and fibromyalgia syndromes., Rheumatol Int. vo. 23(5), pp. 211-215. Epub 2003 Jul 16.
http://link.springer.com/article/10.1007%2Fs00296-003-0355-7

11)京都大学大学院 梅田研究室
http://www.sbchem.kyoto-u.ac.jp/umeda-lab/research/hikaku.html

12)https://ja.wikipedia.org/wiki/%E8%84%82%E8%B3%AA%E3%83%A9%E3%83%95%E3%83%88

13)Kai Simons & Elina Ikonen, Functional rafts in cell membranes., Nature vol. 387, pp. 569-572 (1997) | doi:10.1038/42408

14)Richard M. Epand, Proteins and cholesterol-rich domains., Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1778, pp. 1576-1582 (2008)
http://www.sciencedirect.com/science/article/pii/S000527360800120X

15)慶應義塾大学環境情報学部・基礎分子生物学3 「膜の構造と機能」
http://chianti.ucsd.edu/~rsaito/ENTRY1/WEB_RS3/PDF/JPN/Texts/biobasic3-2-7.pdf#search=%27%E3%82%B3%E3%83%AC%E3%82%B9%E3%83%86%E3%83%AD%E3%83%BC%E3%83%AB++%E8%86%9C%E6%B5%81%E5%8B%95%E6%80%A7%E3%81%AE%E4%BD%8E%E4%B8%8B%27

16)薬のすべてがわかる!薬学まとめ
http://kusuri-yakugaku.com/pharmaceutical-field/pharmacolory/receptor/membrane-receptor/1tm-receptor/

17)John G. Menting et al., How insulin engages its primary binding site on the insulin receptor., Nature  vol. 493, pp. 241–245 (2013) doi:10.1038/nature11781

18)Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R.,  The structure of the potassium channel: molecular basis of K+ conduction and selectivity.,  Science vol. 280 (5360): pp. 69–77. (1998)  doi:10.1126/science.280.5360.69. PMID 9525859

19)https://ja.wikipedia.org/wiki/%E3%82%A4%E3%82%AA%E3%83%B3%E3%83%81%E3%83%A3%E3%83%8D%E3%83%AB

20)Peter Agre et al., Aquaporin CHIP: the archetypal molecular water channel., American Journal of Physiology - Renal Physiology  Vol. 265  no.  4,   F463-F476  (1993)

21)https://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%AF%E3%82%A2%E3%83%9D%E3%83%AA%E3%83%B3

22)https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2003/mackinnon-bio.html

23)Varki A, Cummings RD, Esko JD, et al., editors. Essentials of Glycobiology. 2nd edition. Cold Spring Harbor Laboratory Press (2009).

24)http://www.glycoforum.gr.jp/science/word/proteoglycan/PGA02J.html

|

2017年5月 5日 (金)

生物学茶話@渋めのダージリンはいかが72: 呼吸

ハンス・クレブスらの研究によって、クエン酸回路の全貌が明らかとなり、ブドウ糖が体内でどのように代謝されるかが解明されました(図1)。しかし図1にATPという文字はどこにも書かれていません。酸素もどこにも現れません。クエン酸回路は呼吸の要なのにどうなっているのでしょうか?

A

まずクエン酸回路に投入される物質(インプット)と、クエン酸回路で精製される物質(アウトプット)を図2にまとめてみました。科学者に課せられた課題は、このアウトプットがどのようにATP生成や酸素の消費にかかわっているかということでした。

A_2

クエン酸回路の反応が行われている場所がミトコンドリアであることは、当時から推測されていたわけですが、その反応系を試験管の中に取り出すことは誰にもできませんでした。そのためにはまず細胞を壊して、反応系が無傷で保存されているミトコンドリアを取り出さなければいけません。つまり細胞は壊れているけれど、ミトコンドリアは壊れていないという状態です。これに成功したのがアルベール・クロード(1898~1983、図3)でした。

クロードはベルギー人で、子供の頃に母親を亡くして叔母の手で貧困の中で育ちましたが、第一次世界大戦がはじまったときにチャーチルにあこがれて英国のスパイ組織に従事し、戦後連合国のメダルと退役軍人のステータスを獲得することができて、進学の機会を与えられました。彼は高校に行ってなかったので、リエ-ジュ大学医学部に入学する前に鉱山学校で勉強して、鉱石を遠心分離機で分離する技術を知っていました。何が幸いするかわかりません。彼はこれを細胞にも応用して、ミトコンドリアを遠心分離機を使って無傷で取り出すことに成功したのです。この技術は細胞分画法とよばれるもので、後の生化学の発展に大きく寄与しました(1)。

ミトコンドリアはサイズが小さすぎて光学顕微鏡ではうまく観察できないので、構造を解明するためには電子顕微鏡を用いた研究が必要でした。クロードはルーマニア人のジョージ・パラディー(1912~2008、図3)を誘って電子顕微鏡を生物試料に適用する研究を進めてもらいました。二人は後年(1974年)ノーベル医学生理学賞を受賞しました。

A_3

さてそのミトコンドリアですが、もともとは細菌だったと考えられているわけです。真核生物にとりこまれ、紆余曲折を経て現在のようにオルガネラとして細胞の中で生きています。ミトコンドリアの最もシンプルな構造図を図4に記します。外膜は真核生物由来らしく、細菌から引き継いだ特異な機構は内膜に集中しています。ウィキペディアによるとミトコンドリアの重量は体重の10%を占めるそうで、私達はまさしく真核生物と細菌の合作であることを思い起こさせます。

A_4

ミトコンドリアは真核生物に取り込まれる前から、クエン酸回路で生成したNADHやFADH2、および取り込んだ酸素を使ってH+(プロトン)を膜間腔に追い出し、マトリックスと膜間腔の間に形成されたH+の濃度差による化学浸透圧を利用してATPを合成しています。このようなメカニズムに最初に気がついたのはピーター・ミッチェル(1920~1992、図5)でした。彼はその研究結果を1961年にNature誌に報告しました(2)。しかしその理論はあまりにも斬新なものだったので信じる人が少なく、職を得ることができなかったので、自宅をGlynn研究所と名付けて自費で研究を続けるしかありませんでした(3、4)。

この困難な状況はエフレム・ラッカー、香川靖雄(図5)らによって、ミトコンドリアの内膜に埋め込まれたATP合成酵素が発見されたことで改善され、ピーター・ミッチェルは1978年にノーベル化学賞を受賞しました。このあたりの事情は参照文献(3)に詳述されています。図4の膜内粒子とはATP合成酵素でした。この酵素は複雑で巨大な構造をとっており、まだ正確な分子量は明らかになっておりません。

A_5

現在の理解では、図6に示されるように膜貫通システム複合体 I、III、IV、およびそれを補佐するシステムIIによって、NADH、FADH2、酸素を使ってプロトン(H+)をマトリックスから膜間腔に排出するポンプを駆動し、排出されたプロトンが化学浸透圧によってマトリックスに回帰する際に、そのエネルギーを利用してATP合成酵素がADPからATPを合成するということになっています(5、6)。

A_6

複合体 I についてウィキペディアの受け売りをしますと、図7のように、「複合体 I では、解糖系およびクエン酸回路から得られた NADH から2つの電子が取り除かれ、脂質可溶キャリアであるユビキノンに移される。ユビキノンの還元生成物であるユビキノールは膜の内部を自由に拡散し、次の複合体 III に電子伝達を行なう。複合体 I はプロトンポンプ機構(プロトンが膜を通過する機構)およびキノンサイクル機構を用いて4つのプロトンを膜を通して移動させ、プロトン勾配を作る」 ということになっているそうです(7)。ユビキノンの還元について関心のある方は(8)をご覧下さい。複合体 I が行っていることの収支式は

NADH + ユビキノン(Q) + 5H+ in → NAD+ + ユビキノール(QH2) + 4H+out

ということになります。

A_7

プロトンの排出を行っている複合体は細菌とミトコンドリアではかなり異なっているようですが(7)、ATP合成酵素は全生物共通で進化の痕跡がみられない(9)というのは驚異的です。

ATP合成酵素の研究でポール・ボイヤーとジョン・ウォーカーが1997年にノーベル化学賞を受賞しましたが(図8、参照10)、その影には木下一彦(~2015、図8)らの革命的な研究があったことは確かでしょう。ボイヤーらはATP合成酵素がタービンのように回転するという仮説をたてていましたが、誰もそれを証明することができなかったのです。しかし木下らは酵素を標識することによって、顕微鏡下でその回転を可視化することに成功しました(11)。これによってボイヤーは98才という高齢でノーベル賞を受賞することができたと思われます。

木下らは当然ノーベル賞を受賞すべき成果を上げましたが、ボイヤーが高齢であることから迅速にということで、彼と結晶化して分子構造を解析したジョン・ウォーカーが、とってつけたような Na-K-ATPase のイェンス・スコウと共に授賞されました。論文発表の年に授賞というのはいくらなんでも無理だったのでこういうことになったのでしょう。

A_8

ATP合成酵素は膜間腔につきだしているF1部位と、ミトコンドリア内膜に埋め込まれているFo(エフオー)部位からなる巨大なタンパク質複合体です(図9)。プロトンの流れによってF1部位の γ サブユニットがタービンのように回転し(反時計回り)、ATPを合成するエネルギーを生み出していると考えられます(12)。ATP合成酵素によってマトリックスにとりこまれたプロトンは、すぐに酸素と結合して水になってしまうので、クエン酸回路とプロトンポンプが動いている限り、内膜の外と内でプロトンの濃度差がなくなる状態にはなりません。

A_9

以上のようにエムデン・マイヤーホフ系はミトコンドリア外の細胞質で、クエン酸回路はミトコンドリアマトリックスで、プロトンポンプとATP合成酵素はミトコンドリア内膜で機能しています。

木下一彦先生は2015年の秋に、南アルプス小仙丈岳付近で滑落死するという不慮の死をとげられました(13)。私もこのあたりは何度も歩いたことがありますが、夏山では何の問題もないハイキングコースのようなところでも、凍結していると危険なことをあらためて痛感しました。ご冥福を祈ります。

参照

1)https://en.wikipedia.org/wiki/Albert_Claude

2)Peter Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature  vol. 4784, pp. 144 - 148 (1961)

3)香川靖雄 「ATP合成酵素の発見から人体エネルギー学まで」 日本蛋白質科学会 シリーズ「わが国の蛋白質科学研究発展の歴史」第4回 pp. 23-32
http://www.pssj.jp/archives/files/ps_history/PS_History_04.pdf
(管理人=本稿執筆者註:この文献はいつ出版されたのか確認できませんでした。日本蛋白質科学会が設立されたのが2001年なので、それ以降であることは確かです)

4)杉晴夫 「栄養学を拓いた巨人たち」 講談社ブルーバックス (2013)

5)https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%88%E3%82%B3%E3%83%B3%E3%83%89%E3%83%AA%E3%82%A2

6)電子伝達系と酸化的リン酸化
http://kusuri-jouhou.com/creature1/dentatu.html

7)https://ja.wikipedia.org/wiki/%E9%9B%BB%E5%AD%90%E4%BC%9D%E9%81%94%E7%B3%BB

8)ユビキノンについて
http://hobab.fc2web.com/sub4-CoQ.htm

9)https://ja.wikipedia.org/wiki/ATP%E5%90%88%E6%88%90%E9%85%B5%E7%B4%A0

10) The Nobel Prize in Chemistry 1997,
https://www.nobelprize.org/nobel_prizes/chemistry/laureates/1997/

11)Noji H1, Yasuda R, Yoshida M, Kinosita K Jr.,  Direct observation of the rotation of F1-ATPase.,  Nature, vol. 386(6622): pp. 299-302. (1997)

12)野地博行 安田涼平 木下一彦 「回る酵素の観察」 バイオサイエンスとインダストリー vol. 56, no.10, pp. 665-670 (1998)
http://www.k2.phys.waseda.ac.jp/PDF/1998BioSI_Noji_RotEnz.pdf

13)明滅する一筋の光が我々にみせたもの ~木下一彦さんの追悼に代えて~
http://slight-bright.hatenablog.com/entry/2016/01/28/225438

|

2017年4月28日 (金)

生物学茶話@渋めのダージリンはいかが71: 解糖

17世紀の英国の化学者ジョン(ヨハネス)・メイヨー(1640~1679、図1)は、密閉容器にねずみとろうそくを入れ、ろうそくを燃やすと、まずろうそくが消えて、そのあとねずみが死ぬことを発見しました。ろうそくを燃やさないと、ねずみは燃やしたときと比べてもっと永く生きられました。

ボイルがすでに燃焼には空気が必要であることを主張していましたが、メイヨーは燃焼および生命現象には、空気の成分の1部だけが必要であるとし、その要素を酸素と命名しました。彼は肺が空気から酸素をより分けて血液に供給していると考え、さらに筋肉の活動も体温維持も酸素の燃焼によって行われていると考えていました(1)。メイヨーの慧眼には恐るべきものがあります。

メイヨーの学説はほぼ100年後に、ジョゼフ・プリーストリーとアントワーヌ・ラボアジェ(1743~1794、図1)によって再発見され、特にラボアジェは当時流布していたフロギストン説(「燃焼」はフロギストンという物質の放出の過程である)を否定し、物質と酸素が結合することが燃焼の本質であることを証明しました。彼はこのことを契機に質量保存の法則をみつけました。

A

ラボアジェはメイヨーの考えを正しく引き継ぎ、生命の本質とは、呼吸によって体内に取り込まれた酸素によって、体内の物質を燃焼させることであると考えました。彼の著書 "Elements of Chemistry" は英文版もあり、無料でダウンロードして読むことができます(2)。業績をわかりやすくまとめたサイトもあります(3)。

彼は炭の燃焼を研究し、その本質が炭素と酸素の結合によって二酸化炭素が発生することであることを発見しました。さらに人間の呼吸もこれと類似した現象で、体内にとりこまれた酸素が、体内の炭素と結合して炭酸になることであるとしました。図2はラボアジェと共同研究者達が人の吐く息を集めて、成分を分析する実験を行っているところです。一番右でノートをとっているのが彼の妻マリー・アンヌで、彼女は実験ノートをとるだけでなく、実験器具や実験を実施している状況を正確に絵に描いたり、実験の手伝いや英語の論文の翻訳など八面六臂の大活躍で、世界最初の女性科学者とされています(4)。

A_2

ラボアジェは徴税請負人の仕事で研究費を稼いでいました。この仕事は当然恨みを買う仕事であり、フランス革命において断罪され処刑される結果となりました。彼の名はもちろんエッフェル塔に刻まれています。

さて、ではラボアジェの酸素と結合して燃焼する生体物質とは何なのでしょうか? この答えを得るために大きな貢献をしたのがクロード・ベルナール(1813~1878、図3)でした。彼はエネルギー源となる物質はブドウ糖であること、ブドウ糖はグリコゲンという形で肝臓に貯蔵され、グリコゲンは必要時にブドウ糖に分解されることなどを証明しました。このほかにも膵液がタンパク質や多糖類を消化する、胆汁は脂質の消化を助ける、など栄養学の基盤となるような現象を次々と解明しました(5)。ただベルナールの時代には実験動物の取り扱いが悲惨なものだったので、彼の家族は動物実験に反対してみんな出て行ってしまいました(3)。国葬までされた偉大な科学者でしたが、プライベートは寂しい人生だったようです。

クロード・ベルナールは科学哲学者でもあり、松岡正剛がまとめた彼の言葉(6)から少し引用してみました。

● 実験は客観と主観のあいだの唯一の仲介者である。
● 実験的方法とは、精神と思想の自由を宣言する科学的方法である。
● われわれは疑念をおこすべきなのであって、懐疑的であってはならない。
● 実験的見解は完成した科学の最終仕上げである。

ベルナールの「実験医学序説」は私も学生時代に読んだ記憶があります。現在も岩波文庫で出版されているようです(7、図3)。

A_3

エネルギー源がブドウ糖であることがわかったので、次はブドウ糖がどのように代謝されてエネルギーが生み出されるのかという問題でした。この問題を解明したのはグスタフ・エムデン(1874~1933、図4)とオットー・マイヤーホフ(1884~1951、図4)でした。

エムデンとマイヤーホフは共にユダヤ人だったので、ヒトラーが台頭してからは悲惨な人生でした。エムデンはヒトラー・ユーゲントの乱入で講義を妨害され、自宅に引きこもって失意のうちに病死、マイヤーホフはフランスからピレネー山脈を越えてスペインに逃れ、さらにアメリカに亡命しました。このあたりの事情は木村光が詳細を記述しています(8)。彼の文章を読むと、マイヤーホフがアメリカに亡命できたのはまさに奇跡であったことがわかります。

A_4

エムデンとマイヤーホフと彼らの協力者達が解明したブドウ糖からピルビン酸への代謝経路を図5に示します。現代的知見では、この経路で1分子のブドウ糖の代謝によって4分子のATPが生成され、2分子のATPが消費されます。またNADHが2分子生成されます。図5で計算が合わないと思われる方もおられるかもしれませんが、グルコース1分子からグリセルアルデヒド-3-リン酸2分子が生成されるので計算は合っています。この代謝経路は解糖におけるエムデン-マイヤーホフ経路と呼ばれています。エムデンとマイヤーホフはまさしくライバルであり、非常に仲が悪かったようです。

エムデン-マイヤーホフ経路は、多少のバリエーションはありますが、細菌・古細菌・真核生物のドメインを問わない共通の代謝経路です。酸素がなくてもATPを産生できるので、地球の大気に酸素がなかった時代から完成していたと思われます。地球の生物がひとつのファミリーであることの証左でもあります。

A_5

拡大図↓

800pxglycolysis_2

エムデン-マイヤーホフ経路の解明だけでは、もちろんラボアジェの「酸素と結合して燃焼する生体物質」は明らかになっていません。ラボアジェに答えるためには、ATP(アデノシン3リン酸)の発見と機能の解明、およびミトコンドリアにおけるクエン酸回路と電子伝達系の解明が必要でした。しかしそれもこれもエムデンとマイヤーホフが解明した解糖系でピルビン酸が生成されるということが出発点になっています。

ATP(アデノシン3リン酸)を誰が発見したのかということについては杉晴夫が詳しい調査を行っています(4)。彼の結論によると、「ATPの発見者はカール・ローマンということになっており、論文出版も1ヶ月早かったのですが、これはフィスケの研究室をマイヤーホフが訪問したときに聞いた話をローマンに漏らしたせいであり、本当の発見者はサイラス・フィスケ(1890-1978)とイェラプラガダ・サバロウ(1896-1948)」 だそうです(4,9)。理系の方の多くは学生時代にフィスケ・サバロウ法でリンを定量したと思います。丸山工作はフィスケとサバロウの実験ノートを調べて、彼らが1927年から1928年にかけて、ATPを発見していたことを確認したそうです(4)。

そして松田誠によると、ATP(アデノシン3リン酸)の分子構造を解明したのもローマンではなく、牧野堅(1907~1990、図6)だそうです(10,11)。これは私は全く知らなかった話で驚きました。牧野がどのような方法で解明したのかも文献(11)に詳しく記載してあります。牧野堅は実験を行った場所こそ大連という辺境の病院でしたが、論文はドイツ語で書いてドイツの雑誌に受理されているわけですから(10)、もっと正当に評価されるべきだったと思います。

A_6

すでに核酸のところでも出ましたが、ATPの構造を再揭します(図7)。ATPは図のように高エネルギー結合を2ヶ所に持っており、加水分解されてADPあるいはAMPに代謝されると、エネルギーを放出します。狭い場所に酸素原子が5個も存在して、電気的反発で非常に居心地が悪いのに、酸素を挟んで並ぶPとPが中間にある酸素のローンペアを綱引きしているので、いわゆる共鳴による安定化ができないため、非常に不安定な状態にあります。両側からバネで無理矢理圧縮されているような状態なので、加水分解で解放されると激しく振動し、温度を上昇させます(4)。

A_7

またATPは図8に示したように、共役反応によって、基質Aをより自由エネルギーの高い活性化状態に担ぎ上げることができます。この状態でBと反応が進行し、リン酸を放出して化合物A-Bが生成します。この場合AとBと酵素を単にまぜあわせても、ATPがなければA-Bという化合物はできません。ATPを使う共役反応で、生物は必要な物質を、高分子物質すら合成することができます。ATPはこのように生合成や発熱に使われるだけでなく、筋収縮や能動輸送など生物に特異な現象に幅広く関わっています。

A_8

1937年ハンス・クレブス(1900~1981、図9)はハト胸筋のスライスにピルビン酸とオキザロ酢酸を加えるとクエン酸が生成されることを発見しました。その頃までにコハク酸からオキザロ酢酸への経路はセント・ジェルジによって、クエン酸からα-ケトグルタル酸への経路はカール・マルチウスとフランツ・クヌープによって明らかにされていたので、この両者をつなぐことができたことで、一気にクエン酸回路の完成に近づきました(4)。彼は天才的科学者でかつ医師でしたが、ユダヤ人であったためにドイツで働くことができず、英国に移住して研究を行いました。

クレブスの実験はあくまでも細胞にピルビン酸とオキザロ酢酸を加えると、途中の経路はブラックボックスで、結果的に細胞がクエン酸を生成するというもので、反応の実体は不明でした。このブラックボックスを解明したのがフリッツ・リップマン(1899~1986、図9)でした。リップマンもユダヤ人であり、ナチスの迫害を逃れて米国で研究を行いました。彼らに限らず、20世紀における科学の重要な進展の大部分は、ナチスに追われたユダヤ人によって成し遂げられたように思います。

A_9

解糖によって生成されたピルビン酸が、どのようにしてクエン酸回路に投入されるかという問題はリップマンによって解明されました。キーとなる因子はリップマンが発見したコエンザイムA(CoA あるいは HSCoA などとも表記します)でした(図10)。まずピルビン酸はコエンザイムAと反応してコエンザイムをアセチル化し、アセチルCoAを生成します(図10、図11)。この反応で二酸化炭素とプロトンが発生し、二酸化炭素は肺から外界に排出されます。プロトンはミトコンドリアに蓄積されます。

次にアセチルCoAはオキザロ酢酸とアセチル基を連結させてクエン酸とHSCoAを生成します。クエン酸はクエン酸回路に投入され、HSCoAは再利用されるということになります。クレブスとリップマンはクエン酸回路の解明によって、1953年にノーベル医学・生理学賞を受賞しています(12-14)。

A_10

A_11


なぜコエンザイムAのような非常に複雑な分子が、酸素存在下での生物の大発展のためのキーファクターになったのか、それは謎です。

参照

1)J.J.Beringer,  John Mayow: Chemist and Physician.,  Journal of the Royal Institution of Cornwall. Royal Institution of Cornwall. vol.IX, pp.319-324
https://books.google.co.jp/books?id=10MBAAAAYAAJ&pg=PA319&redir_esc=y&hl=ja#v=onepage&q&f=false

2)https://archive.org/details/elementschemist00kerrgoog

3)近代化学の父:ラボアジェ
https://istudy.konan.ed.jp/renandi/materialcontents/107932/101920/2016PreLabo09.pdf

4)杉晴夫著 「栄養学を拓いた巨人たち」 講談社ブルーバックスB-1811 (2013)

5)F. G. Young, Claude Bernard And The Discovery Of Glycogen: A Century Of Retrospect., The British Medical Journal, Vol. 1, pp. 1431-1437  (1957)
https://www.jstor.org/stable/25382898?seq=1#page_scan_tab_contents

6)松岡正剛の千夜千冊
https://1000ya.isis.ne.jp/0175.html

7)クロード・ベルナール著、三浦岱栄訳 「実験医学序説」 岩波文庫 青916-1 (1970)

8)木村光、オットー・マイヤーホッフのヒトラーとナチスからの逃脱-ピレネー越えの真相 化学と生物 vol. 53 (11), pp.792-796 (2015)
https://katosei.jsbba.or.jp/view_html.php?aid=478

9)Fiske CH, Subbarow Y.,  Phosphorus compounds of muscle and liver. Science 1929, vo. 70, pp. 381-382 (1929)

10)Makino K., Ueber die Konstitution der Adenosin-Triphosphorsaeure. Biochem Z. vol. 278, pp. 161-163 (1935)

11)松田誠 牧野堅によるATP構造解明 慈恵医大誌 vol. 125, pp. 239-248 (2010)
http://ir.jikei.ac.jp/bitstream/10328/6505/1/125-6-239.pdf

12)Award Ceremony Speech.
https://www.nobelprize.org/nobel_prizes/medicine/laureates/1953/press.html

13)Hans Krebs: Nobel lecture, The citric acid cycle.
https://www.nobelprize.org/nobel_prizes/medicine/laureates/1953/krebs-lecture.pdf

14)Marc A. Shampo and Robert A. Kyle., Fritz Lipmann—Nobel Prize in Discovery of Coenzyme A. Mayo Clinic Proceedings, Volume 75, Issue         1,  Page 30
http://www.mayoclinicproceedings.org/article/S0025-6196(11)64252-3/pdf

|

2017年4月23日 (日)

生物学茶話@渋めのダージリンはいかが70: ステロイド

ステロイドというと一般的には炎症を抑えるために処方されるコルチゾール系の薬品を意味しますが、学術的にはもっと幅広く、性ホルモン・胆汁酸・コレステロールなども含みます。

ステロイドという生体物質は、脂肪酸や油脂とは全く異なり、図1に示されるような風変わりな基本構造(ステロイド骨格)を持っています。この基本構造はA,B,Cという3つの6員環とDというひとつの5員環からなり、通常3の位置がヒドロキシル化(-OH)またはカルボニル化(=O)されています。また10と13の位置はメチル化、17の位置はアルキル化されています。アルキル化というのはCH3、CH2CH3、CH2CH2CH3、・・・ などCnH2n+1が結合するという意味です。

ステロイド骨格そのものは脂溶性で水に不溶ですが、ヒドロキシル化されていると多少水に溶ける場合があります。17位に結合しているアルキル基がヒドロキシル化されることもあります。

A

ステロイドはほとんどの真核生物の体内で生合成され、細胞膜の重要な構成成分となっているほか、胆汁に含まれる胆汁酸やホルモン類(性ホルモン・副腎皮質ホルモンや昆虫の変態ホルモンなど)として、幅広く利用されています。ただしステロイドは真核生物だけに合成能力があり、細菌や古細菌にはみられません。したがって例えば化石にステロイドが含まれていれば真核生物と示唆されます(もちろん現生生物による汚染の問題は常に考慮されなければなりません(1))。

話は変わりますが、多くの硬骨魚類は鰾(うきぶくろ)を持っていますが、サメなどの軟骨魚類はもっていません。従って泳がないと海底に沈んでしまいます。このような事態をさけるために、一部のサメは肝臓に多量のスクワレンという脂質を蓄えて浮力の足しにしています(2、3)。サプリメントの肝油というのはこの種のサメの肝臓の抽出物でです(4)。辻本満丸は1906年にサメの肝油からスクワレンを発見して記載しています(5、図2左)。後日書籍にもなっているようです(図2右)。

A_2

スクワレンの構造は、1929年になってイアン(イシドール)・ヒールブロンによって明らかにされました(6)。よく化粧品に使われるスクワランは、スクワレンの-C(?)=C(?)-をすべて-CH(?)-CH(?)-に変換したものです(?はCH3またはH)。スクワレンはクエン酸回路やβ酸化にもかかわっている、いわば代謝の交差点のようなアセチルCoAから生合成されます(図3)。そしてスクワレンがステロイド合成の起点となります。

A_3


スクワレンはスクワレンエポキシデース(7)とラノステロールシンテース(8)という2種の酵素のはたらきで、ラノステロールというステロイド骨格をもつ化合物に変化します。

A_4

ラノステロールはあらゆるステロイド化合物の前駆体ですが、自身もラノリンの成分として動物の皮脂腺から分泌されており、毛皮に水分が浸透しないように保護する役割があるとされています(10)。

実は毛根は表皮を経由せず直接外界と接しているので、もし皮脂がなければ容易にウィルスや細菌が侵入してきます。したがって毛穴を皮脂で埋めておくことは大事なことです。ですから、毛根鞘の死細胞を取り除くというメリットがあるとしても、毎日髪をシャンプーで洗うことは健康には良くないと言えます。どうしてヒトは髪を洗うと気分が良くなるのか、生物学的には不思議な現象です。もちろん毎日シャンプーで毛を洗う生物なんて、ヒト以外にあり得ません。

ラノステロールからコレステロールが合成される経路をウィキペディアからコピペしました(図5)。

A_5

これらの複雑なステロイド生合成経路を解明した業績で、コンラート・ブロッホ(1912-2000)とフェオドル・リュネン(1911-1979)(図6)が1964年のノーベル生理学・医学賞を受賞しています。ブロッホはユダヤ人で、ナチスから逃れて米国にたどりついた人です。リュネンはミュンヘンで生まれ育ち、ミュンヘン大学教授からミュンヘンのマックス・プランク細胞化学研究所の研究所長になりました。伝説の故沼正作先生(http://scienceandtechnology.jp/archives/9655)はこの方のお弟子さんだそうです。

A_6

代表的なステロイド系化合物の構造を図7に示しました。コレステロールは細胞膜の構成要素、コール酸は胆汁の成分、テストステロンは男性ホルモン、エストラディオールは女性ホルモン、コルチゾールは副腎皮質ホルモンです。

A_7

図8にみられるように、コレステロールは細胞膜の構成要素です。細胞膜の基本構造はリン脂質が「親水部位」を細胞外および細胞内の外側向け、「疎水部位」を膜内部にむけて整列した2重膜構造になっていますが、コレステロールも親水側を細胞外または細胞内に向け、疎水部をリン脂質の疎水部位に埋め込んだ形で存在します。

コレステロールが膜構造に加わることによって、膜の流動性(しなやかさ)が高くなり、温度が下がることによって発生する相転移(硬くなる)が阻止されます。細胞膜は単なる壁ではなくて、その中で化学反応や分子構造の変化、物質の出し入れなどが行われているので、それなりの可塑性の高さが必要だと思われます。

A_8

コレステロールが特に集積している組織として、ミエリン鞘が知られています。ミエリン鞘は神経細胞の軸索を被うカバーのような組織です。その実体は図9に示すように、シュワン細胞はが「ふとん」で軸索が「人」だとすると、「ふとん」でぐるぐる巻きにしたような構造になっています。すなわち細胞膜が何重にもなっているような構造なので、細胞膜の脂質は当然大量に含まれることになります。脳の白質はミエリン鞘が集積している組織なので、特に脂質が豊富です。

A_9


コレステロールというと、すぐに健康診断でのHDL・LDLの値が頭に浮かぶわけで、ここを避けては通れません。コレステロールは水への溶解度が低く(95マイクログラム/リットル)、体の中を移動するにはタンパク質と結合して、リポタンパク質の形をとらなければなりません。

コレステロールは主としてLDL(low density lipoprotein)またはHDL(high density lipoprotein)というリポタンパク質として移動します。LDLはコレステロールを肝臓から末梢組織へ供給し、HDLは過剰なコレステロールを末梢組織から肝臓に戻す役割があると言われています。HDLでもLDLでもコレステロール自体の分子構造に変わりはなくて、結合するタンパク質の方が異なっています。

LDLは悪玉コレステロール、HDLは善玉コレステロールと呼ばれていますが、これは害虫と益虫のような自然科学とは乖離した命名で、私たちは使いたくないのですが、LDLが動脈硬化の一因であることは確かなようです(12)。LDLが細胞内で発生する活性酸素によって酸化されると、マクロファージに貪食され、大量にLDLを取り込んだそのマクロファージが死ぬと、死んだ場所にコレステロールの塊(胆石はコレステロールの塊です)が残されます。これによって動脈硬化が促進され、最悪心筋梗塞や脳梗塞に至ります。

HDLが少なすぎると、余分なコレステロールを肝臓にもどせなくなるわけですが、かといってどんどんもどすと脂肪細胞が巨大になって、脂肪細胞が分泌するホルモンなどが過剰になり、生理活性物質のバランスがくずれると思うのですが、そのあたりのことはよくわかりません。

肥満になると脂肪細胞から分泌される物質(アディポサイトカイン)が異常となり、生活習慣病を誘発すると指摘している書物はあります(13)。ただHDLの wikipedhia をのぞいてみると、HDLのないマウスも生きているみたいなので、コレステロールを運搬する別経路もあるようです(14)。ならば健康診断の結果を見て、指導員がHDLが少ないからどうしろこうしろというのも、本当に妥当な指示かどうかは疑わしいと思います。すくなくともまだ医学的な根拠には乏しいようです。

コール酸は肝臓でコレステロールから合成されてたあと、グリシンやタウリンと結合してグリココール酸やタウロコール酸となります(図10)。これらは抱合胆汁酸と呼ばれますが、胆嚢に蓄積された後、胆汁の成分として腸内に放出され、脂肪をミセル化して腸に吸収されやすくします。脂肪をミセル化した代表的食品として図10のマヨネーズがあります。

A_10

性ホルモンについてはあらためて述べる機会もあると思います。最後に糖質コルチコイド(=グルココルチコイド)についてすこし述べておきます。コルチコステロン・コルチゾール・コルチゾンなどがこれに相当します。デキサメタゾンなどは自然に存在するものではなく、人工的に合成された薬剤であり、主として炎症をおさえるため、または免疫反応を抑制するために使用されます。

生体に存在する糖質コルチコイドは副腎皮質で作られ、抗炎症作用や免疫抑制作用のほか、図11のようにインスリンと逆の役割で、血糖値を上昇させる作用があります。主に生体がストレスを感じたときに分泌されます。糖質コルチコイドなどのステロイドホルモンは一般的に細胞膜を通過することができ、細胞質にある転写調節因子と結合して核内に侵入し、転写を調節することによって機能が発揮されます(15)。

A_11

参照

1)http://blog.livedoor.jp/science_q/archives/1861037.html

2)http://markpine.blog95.fc2.com/blog-entry-69.html

3)https://ja.wikipedia.org/wiki/%E3%82%B9%E3%82%AF%E3%82%A2%E3%83%AC%E3%83%B3

4)http://www.241241.jp/products/supplement/same/

5)辻本満丸  “黒子鮫油に就て”. 工業化学雑誌 vol. 9 (10): pp. 953-958. doi:10.1246/nikkashi1898.9.953 (1906)

6)Heilbron, I. M.; Thompson, A. ,  "CXV.—The unsaponifiable matter from the oils of elasmobranch fish. Part VI. The constitution of squalene as deduced from

a study of the decahydrosqualenes."  J. Chem. Soc. pp. 883–892. (1929)  doi:10.1039/JR9290000883.

7)榊原順、小野輝夫、スクアレンエポキシダーゼ -もうひとつのコレステロール合成律速酵素 蛋白質 核酸 酵素 vol. 39 (9), pp. 1508-1517 (1994)
http://lifesciencedb.jp/dbsearch/Literature/get_pne_cgpdf.php?year=1994&number=3909&file=j9768PH3xxMJB18tkcGRUQ==

8)阿部郁朗、スクワレン閉環酵素の生物有機化学 蛋白質 核酸 酵素 vol. 39 (10),  pp. 1613-1624 (1994)
http://lifesciencedb.jp/dbsearch/Literature/get_pne_cgpdf.php?year=1994&number=3910&file=c/RbruPLUSYUeEJB18tkcGRUQ==

10)https://ja.wikipedia.org/wiki/%E3%83%A9%E3%83%8E%E3%83%AA%E3%83%B3

11)https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%AC%E3%82%B9%E3%83%86%E3%83%AD%E3%83%BC%E3%83%AB

12)http://fmd-kensa.jp/pg2.html

13)近藤和雄 「人のアブラはなぜ嫌われるのか」 ~脂質「コレステロール・中性脂肪など」の正しい科学 技術評論社 (2015)

14)https://en.wikipedia.org/wiki/High-density_lipoprotein

15)http://kanri.nkdesk.com/hifuka/ste2.php

|

2017年4月14日 (金)

生物学茶話@渋めのダージリンはいかが69: 糖脂質

前回68で、スフィンゴシンやセラミドの発見者としてトゥーディヒョウムの名前を出しましたが、彼は臨床医で科学実験は自宅でやっていたこともあって、当時の学会からは嘲笑・圧殺されるような存在だったそうです。しかし彼はスフィンゴシンやセラミドのみならず、糖脂質の研究も創始しました。トゥーディヒョウムは1901年に死亡しましたが、死後1910年代になって再評価が進み1913年以降、1870年代に彼が脳から抽出精製した糖脂質(セレブロシド)の構造が解明されて、埋もれていた研究が日の目を見ることになりました(1)。

セレブロシドの構造を解明したのはオットー・ローゼンハイムやハンス・ティーレフェルダーらで、トゥーディヒョウムが脳から抽出して精製した物質はガラクトース-スフィンゴシン-リグノセリン酸およびガラクトース-スフィンゴシン-セレブロン酸の2種であることがわかりました(図1)。いずれもスフィンゴシンに糖と脂肪酸が結合した化合物であり、これが糖脂質(スフィンゴ糖脂質)の基本構造になります。

光合成細菌や植物はスフィンゴ糖脂質とは異なるグリセロ糖脂質(図1右下)を持っており、これはグリセリンの3つのOHのうち、2つに脂肪酸、1つにガラクトースが結合している構造になります(2)。機能も研究されています(3)。私たち動物の体にも多少見つかるようですがその機能はよくわかっていないようです。

A

その後エルンスト・クレンクやアルバート・キンバルらによって、セレブロシドの脂肪酸の部分が、リグノセリン酸とセレブロン酸以外にネルボン酸やα-オキシネルボン酸の場合もあることが示されました(4、5、図2)。

A_2

セレブロシドに含まれる糖はガラクトースだけでなく、グルコースの場合もあります(図3)。ガラクトセレブロシドが脳に多いのに対して、グルコセレブロシドは全身に存在します。グルコセレブロシドをグルコースとセラミドに分解する酵素(グルコセレブロシダーゼ)に遺伝的欠陥または欠損があった場合ゴーシェ病となり、肝臓・脾臓・骨髄・脳などにグルコセレブロシドが蓄積して様々な症状を発症します。

グルコースを含むセレブロシドの存在は、ゴーシェ病の患者に蓄積されたセレブロシドの解析から明らかになりました(1)。このように、病気の解析が基礎科学の進歩に寄与することはよくあることです。

A_3

実はクレンクらが提出していたセレブロシドの構造式には間違ってい点があって、ハーバート・E・カーターらはそれまでの間違いを正し最終的にスフィンゴシンの構造を確定ました(6)。もしろん図1に示した構造は確定されたものです。第二次世界大戦後の糖脂質の研究は、ハーバート・E・カーター(図4)を中心に進められました。彼の人となりなどは「参照」に示したメモアールに記載されていますが、学会の前日でも雨のゴルフコースに出て行くほどゴルフ好きだったようです(7)。

A_4さてスフィンゴ糖脂質にはセレブロシド以外にもうひとつ大きなグループがあり、それはウィキペディアの定義によれば、糖がセレブロシドでは単糖であるのに対してオリゴ糖のものということで、ガングリオシドと呼ばれています。

ガングリオシドの名の由来はガングリオン(神経節)で、脳の灰白質に多いことからクレンクが命名しました(8)。図5に代表的なガングリオシドであるGM1の構造式を示しましたが、セレブロシドとの違いは糖が単糖ではなく、オリゴ糖であることです。

ノイラミン酸という新顔も登場します。これらで構成されるオリゴ糖には多様性があり、図6に示されるように、外からひとつづつ糖を削っていくとGM2、GM3となりますし、追加や枝分かれもあるので、非常に多様な構造になり得ます。

A_5

図6にはGM1、GM2、GM3の関係を示します。

A_6

ノイラミン酸は糖脂質だけでなく、糖タンパク質においても頻出しますが、ノイラミン酸そのものは生体には存在せず、アミノ基や水酸基の水素が置換されてできた化合物が重要な役割を果たしているようです。N-アセチルノイラミン酸やN-グリコリルノイラミン酸はその例で、これらをまとめてシアル酸とよびます(図7)。

A_8

細胞膜は脂質でできているので、ガングリオシドはそのスフィンゴシンやステアリン酸の疎水性の部分を細胞膜に埋め込み、オリゴ糖部分を細胞外に突き出すことができます。まさしく樹木の地下部分と地上部分のようなイメージです。そうすると地上部分のオリゴ糖の構造によって、細胞を識別することが可能です。つまり接着しやすい構造の細胞が集まって組織をつくることができるわけです。また細胞外からの情報を、あるグループの細胞だけが受けとることもできます。

第二次世界大戦前後の頃は、そんな糖脂質の機能など想像もされていなかったのですが、突破口を開いたのは戦後間もない日本の山川民夫(図8)でした。彼が目を付けたのは、ウマの赤血球をウサギに注射すると、ウマの赤血球を凝集する抗体がウサギの血清中に産生されますが、その血清は、ウシやヒツジなどの赤血球を凝集することはできないという、いわゆる種特異性凝集反応でした。彼は赤血球膜には種特異性を示す何かがあるかもしれないと考えました。

A_9

まずウシの赤血球を水に投入して溶血させ、細胞膜を遠心分離によって沈殿させます。その沈殿(ゴーストという)を多量に集めて脂質を抽出すると、セレブロシドではなくガングリオシドに似た物質が抽出されました。これを山川はヘマトシドと名付け、ブタの脳のガングリオシドと比較研究をはじめました。ヘマトシドにはブタのサンプルと異なりノイラミン酸が含まれていることがわかりました。

その後ヒトの赤血球の糖脂質とも比較しましたが、それはウマの糖脂質とはかなり成分が異なっており、グロボシドと名付けられました。グロボシドには脂肪酸・スフィンゴシン・グルコース・ガラクトース・アセチルガラクトサミンが含まれていました。

いろいろな動物で調べてみると、ノイラミン酸がなくてガラクトサミンがあるタイプ(グロボシド型、ヒト・ブタ・モルモット・ヒツジ・ヤギ)と、ノイラミン酸があってガラクトサミンがないタイプ(ヘマトシド型、ウマ・イヌ・ネコ)に分かれていることがわかりました(1)。

カール・ラントシュタイナー(1868-1943、図7)がABO血液型を発見したのは1901年のことでした。1960年になって、山川らはグロボシドと抗A抗体の沈殿から糖脂質を抽出し、血液型物質が糖脂質であることを示唆しました。このことは多くの研究者によって追試され、赤血球表層にある血液型物質が糖脂質であることは確定しました(1)。

図9をみるとわかるように、ガングリオシド(グロボシド)のオリゴ糖部分はO型が基本となっており根元がフコースで、ガラクトース・Nアセチルグルコサミン・ガラクトースとつながっています、A型ではフコースの次に位置するガラクトースにN-アセチルガラクトサミンの側鎖があり、B型では同じガラクトースにガラクトースの側鎖がついています。AB型ではA型の側鎖があるガングリオシドとB型の側鎖があるガングリオシドの両者があります。

A_10

血液型についての説明は下にウィキペディアをコピペしておきます。内容はちょっと難しいかもしれません。H抗原というのは図9ですべての型の人が持っているフコース+ガラクトース+Nアセチルグルコサミン+ガラクトースのチェインのことだと思います。このチェインにNアセチルガラクトサミンまたはガラクトースを結合させる際に、それぞれ別の酵素が必要で、それがA型、B型の人は1種づつ、AB型の人は2種もっていて、O型の人は両方とも持っていないということでしょう。

ただそのH抗原の糖鎖をつくるのにも酵素が必要なので、この土台をつくる酵素が欠損している場合、Nアセチルガラクトサミンまたはガラクトースを結合させる酵素が存在しても、実際にはA抗原もB抗原も形成されず、見かけ上O型と同じになってしまうので注意が必要です。

----------

A型はA抗原を発現する遺伝子(A型転移酵素をコードする遺伝子)を持っており、B型はB抗原を発現する遺伝子(B型転移酵素をコードする遺伝子)を、AB型は両方の抗原を発現する遺伝子を持っている。A抗原、B抗原はH抗原からそれぞれA型転移酵素、B型転移酵素によって化学的に変換される。

3種の遺伝子の組み合わせによる表現型、ABO式血液型を決定する遺伝子は第9染色体に存在する。H物質発現をコードする遺伝子は第19染色体に位置し、H前駆物質をH物質へ変換させる。この遺伝子が発現しない場合はボンベイ型となる(後述)。

  • A型 - A遺伝子をすくなくとも一つ持ち、B遺伝子は持たない(AA型、AO型)→A抗原を持つ。B抗原に対する抗体βが形成
  • B型 - B遺伝子をすくなくとも一つ持ち、A遺伝子は持たない(BB型、BO型)→B抗原を持つ。A抗原に対する抗体αが形成
  • O型 - A遺伝子・B遺伝子ともに無い(OO型)→H抗原のみ持つ。A,B抗原それぞれに対する抗体α、抗体βが形成
  • AB型 - A遺伝子・B遺伝子を一つずつ持つ(AB型)→A抗原、B抗原両方を持つ。抗体形成なし

A抗原とB抗原は、持っていないとそれに対する自然抗体が形成されることが多く、この場合、型違い輸血により即時拒絶が起こる。自然抗体がなくとも型違い輸血により1週間程度で新しいIgM抗体が生産されこれが拒絶反応をおこす。そのため、基本的には型違い輸血は行われない。輸血される血液は受血者の血液より少量のため、血漿によって希釈されて抗原抗体反応が起こらなくなる。そのため、かつてはO型は全能供血者、AB型は全能受血者と呼ばれていたが、ABO以外の型物質(Rh因子やMN式血液型など)が存在することもあり現在では緊急時を除いては通常行われない。2010年4月には大阪大学医学部附属病院で治療を受けた60代の患者が同型の赤血球製剤とO型の新鮮凍結血漿の輸血後に死亡する事故が発生している(但し、この患者は搬送当時すでに意識がなかったことから輸血が原因でない可能性もある)。

なお、自然抗体を持っている理由は、細菌やウイルスが唾液や性的接触などにより人間間で感染するように、人間の細胞や細胞の断片も人間間を移動するからであり、移動した断片はマクロファージによりファゴサイトーシスされ、これがT細胞に提示され抗体が作られる。主にIgMが作られるが、IgG抗体も作られることもある。

----------

糖脂質についてもっと詳しく知りたい方には総説(9、10)などがあります。

参照

1)山川民夫著 「糖脂質物語」講談社学術文庫 (1981)

2)日本光合成学会:http://photosyn.jp/pwiki/index.php?%E3%83%A2%E3%83%8E%E3%82%AC%E3%83%A9%E3%82%AF

%E3%83%88%E3%82%B7%E3%83%AB%E3%82%B8%E3%82%A2%E3%82%B7%E3%83%AB%E3%82%B0%E3%83%AA%E3%82%BB%E3%83%AD

%E3%83%BC%E3%83%AB

3)下嶋美恵・小林康一・太田啓之 葉緑体チラコイド膜を構成するグリセロ糖脂質の生合成と機能 化学と生物 vol.46, pp.330-337 (2008)

4)H.Thierfelder and E.Klenk., Die Chemie der Cerebroside und Phosphatide. (1930)

5)A.C.Chimball, S.H.Piper, and E.F.Williams.,  XVIII.THE FATTY ACIDS OF PHRENOSIN AND KERASIN. Biochem.XXX pp.100-114 (1936)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1263366/pdf/biochemj01065-0112.pdf#search=%27Thierfelder+and+Klenk+1930%27

6)Herbert E. Carter et al., Biochemistry of the sphingolipides. III. Structure of sphingosine.  J. Biol. Chem. vol.170, pp.285-294 (1947)
http://www.jbc.org/content/170/1/285.full.pdf

7)N a t i o n a l  Ac a d e m y  o f  S c i e n c e s,  H e r b e r t  E d m u n d  C a r t e r 1 9 1 0 — 2 0 0 7
A Biographical Memoir by Robert K. Yu and John H. Law (2009)
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/carter-herbert-e.pdf

8)William W. Christie., GANGLIOSIDES STRUCTURE, OCCURRENCE, BIOLOGY AND ANALYSIS (2012)
https://web.archive.org/web/20120328213709/http://lipidlibrary.aocs.org/lipids/gang/file.pdf
https://web.archive.org/web/20091217095434/http://lipidlibrary.aocs.org:80/Lipids/gang/index.htm

9)Sen-itiroh Hakomori., Structure and function of glycosphingolipids and sphingolipids: Recollections and future trends. Biochim Biophys Acta. vol. 1780(3) pp.

325–346. (2008)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2312460/

10)Zhou and Blom. Trafficking and Functions of Bioactive Sphingolipids: Lessons from Cells and Model Membranes. Lipid Insights vol. 8 (S1) pp. 11–20

(2015) doi:10.4137/LPI .S31615.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685176/pdf/lpi-suppl.1-2015-011.pdf

|

2017年4月 3日 (月)

生物学茶話@渋めのダージリンはいかが68: 脂肪酸と油脂

脂肪というとすぐ中性脂肪とかセルライトが気になるわけですが、エネルギーを蓄えておくためのツールとして脂肪は重要です。動物にとって飢餓は日常的であり、いざというときに生き残れるかどうかは、どれだけ脂肪とグリコーゲンを体内に蓄えておけるかにかかっています。人間については、現在世界で9億2500万人が飢餓状態にあり(1)、日本でも2011年の厚生労働省の調査では年間1746人が餓死しています(2)。食べ物がないときに生き残るには冬眠・夏眠が有効ですが、残念ながらヒトにはその能力はありません。

しかし生物にとってエネルギー蓄積が課題になるより進化上はるかに前の段階で、脂肪は細胞膜の最も主要な成分として、すなわち生命と外界を分かつパーティションとしての役割がはじまったはずです。これは生命誕生のひとつの条件であり、たとえ熱水噴出口近傍の金属片の上で核酸や酵素が生成されたとしても、それらが細胞膜で包み込まれるまでは生命体とは言えないでしょう。そして現在では、脂肪はホルモンや情報伝達物質としても重要な役割を果たしていることがわかっています。

脂肪の基本は脂肪酸です。最初に脂肪酸を発見したのは誰だか私にはわかりませんが、ステアリン酸やオレイン酸を発見して精製したのはミシェル=ウジェーヌ・シュヴルール(1786~1889)です(図1、参照3、4)。彼はフランス革命とエッフェル塔建設を目撃した数少ないフランス人だそうです。エッフェル塔の展望室の少し下の壁に、フランスの偉人の名前が刻まれていますが、シュヴルールの名も図2の赤の矢印の下にみつけることができます。図2をクリックして拡大すると、名前が読めます。

A

A_2

脂質は脂肪酸関連物質、芳香族化合物の環構造を持つ物質、複合脂質の3つのグループにわけられると思いますが(図3)、量的に言えば脂肪酸関連物質が生体内には圧倒的に多量に存在します。カルボン酸をR-COOHと書くとすると、Rが水に溶けないCとHからなる場合脂肪酸といいます。ただしRがH、CH3、CH3CH2あたりまではカルボキシル基の影響が強く、脂肪らしくない性質なので、通常脂肪酸とは呼びません。CH3CH2CH2(酪酸)あたりからは脂肪酸と呼びます(図4)。これらの脂肪の性質を与える炭素+水素の鎖を、鎖の長さを問わずアシル基と呼ぶことがあります。

A_3

A_4

常温で液体の脂肪酸は世の中で最も臭い物質の1グループだと思います。吉草酸やカプロン酸の臭さは半端じゃありません。私が学生実習などでかいだ臭いの中では、ピリジンとトップを争う悪臭と思います。屍体の臭いは多数の物質の混合臭なので比較することはできません。

これらの低分子量の脂肪酸は確かに飲むと健康を害しますが、特別にそのような脂肪酸を忌避する能力(臭いと感じる能力)が私たちに備わっていることには何らかの理由があるまたはあったのでしょう。炭素原子数が10くらいになると常温で固体なので、臭いは気にならなくなります(図5)。図5にはR-COOHのR部分にC=Cの二重結合がない、いわゆる飽和脂肪酸のリストを示しました。カプリル酸より分子量が大きい脂肪酸は食用に使えます。

A_5

カプリル酸はウィキペディアによると母乳に含まれているそうですが、カプリル酸には殺菌作用があるので、免疫機構が未発達の新生児には有益なのかもしれません。

脂肪酸は生合成されるときに炭素が2個単位で重合していくため(5、6)、生体内に存在する主要な脂肪酸の炭素の数は偶数になります(図5、参照5)。ただしメインであるアセチルCoAとマロニルCoAとの縮合ではなく、プロピオニルCoAとマロニルCoAの縮合を出発点とする経路もあるので、炭素が奇数の脂肪酸が全く存在しないわけではありません。

脂肪酸は数値表現されることがあり、図5の左端列に示してあります。コロンの左側が炭素分子の数。コロンの右側が二重結合(C=C)の数になります。飽和脂肪酸の場合二重結合がないのでコロンの右は0になります。数値表現はわかりやすくて便利です。

二重結合(C=C)が分子内に存在する脂肪酸を不飽和脂肪酸と呼びます。炭素数が18の例を図6に示しますが、例えば18:2(9、12)というのは炭素数=18、二重結合=2ヶ所、二重結合がカルボキシル基から数えて9番目と10番目および12番目と13番目の炭素によって形成されているという意味です。オレイン酸はステアリン酸から生合成されますが、ヒトの場合、生きていく上で必要なのにリノール酸、リノレン酸、EPA、DHAなどは生合成できないので、これらは必須脂肪酸とされています。

A_6

図6では炭素の鎖が途中で180度折れているように描いてありますが、慣用表記のひとつであり、実際にこのように折れているわけではありません。分子の屈曲は二重結合の性質(シスかトランスか)、数、位置によって異なります。図7に例を示します。αリノレン酸は大きく屈曲しています。

A_7

混乱して困る話しなのですが、脂肪酸の命名法のなかに、カルボキシル基と反対側のCH3から数える方法もあって、ω:オメガ法ではα-リノレン酸は3つめに最初の二重結合があるのでω3脂肪酸、γ-リノレン酸は6つめに最初の二重結合があるのでω6脂肪酸などと呼ばれます(図8)。n-数値という表現も逆から数えた表現法です。α と γ は習慣的に使用している表現法に過ぎません。

A_8

C=Cの二重結合にはシス型とトランス型があって、一般にシス型すなわち二重結合の片方にふたつのHが来る場合、図9のように分枝は屈曲します。自然界に存在するオレイン酸はほとんどシス型なので、通常オレイン酸と言った場合シス型を意味します。

シス型がの二重結合が二つあった場合、リノール酸のように屈曲が修正されることがあります。人工的に製造されたトランス脂肪酸は食べると健康に悪影響があることがわかっています(7)。アメリカの食品医薬品局(FDA)は、マーガリンなどに含まれる「トランス脂肪酸」の発生源となる油の食品への使用を、2018年以降原則禁止すると発表しました(8)。日本政府はこの規制には消極的なようです。

A_9

グリセリン+脂肪酸=油脂+水という公式は、中学の化学の時間に皆さん習ったはずですが、再掲しておきます(図10)。油脂は生体内では最もメジャーな脂質です。

油脂は図10のように、グリセリン(グリセロール)1分子に脂肪酸3分子がエステル結合(-OC[=O]-)したものです。これによってグリセリンのOH、脂肪酸のCOOHという親水性の部分が消滅するので、典型的な疎水性の物質ができます。

3分子の脂肪酸はそれぞれ種類が指定されないので、例えば10種類の脂肪酸が用いられるとすると、10x10x10で1000種類の油脂ができ得ることになります。実際には脂肪酸の種類はもっと多いので、油脂の種類は無数にあることになります。

A_10

グリセロリン脂質はグリセリンのOHのうち、R1・R2は油脂と同じ脂肪酸と結合し、R3のOHがリン酸エステル(-OP[=O、-O]-)結合したものです。グリセリン以外のリン酸に結合する物質によって、フォスファチジルコリン・フォスファチジルセリン・フォスファチジルエタノールアミンなどが知られています(図11)。これらは脂質であるにもかかわらず、親水的な部分が存在するという特異な性質を持っています。この性質は両側で水と接触する細胞膜にとって、あるいは脂肪を血液中で運搬する作業にとって重要です。これらについては別のセクションで述べます。

A_11

動植物の細胞膜中に最も多量にあるのはグリセロリン脂質ですが、次に多いのはスフィンゴ脂質です。哺乳類では特に中枢神経に多いとされています(9)。スフィンゴ脂質の基本骨格はスフィンゴシンです。アミノ基1個とOHを2つ持つ直鎖状の分子です(図12)。このアミノ基に1分子の脂肪酸がアミド結合したものがセラミドです。

セラミドの末端のOHにフォスフォコリンやフォスフォエタノールアミンが結合したものを、スフィンゴミエリンといいます。スフィンゴミエリンは神経のサヤである神経鞘の主成分です。セラミドは最近では保湿剤としてよく化粧品に配合されています(10)。「うるむセラミド」などというキャッチフレーズもありました。

A_12

スフィンゴシンやセラミドを発見したのはトゥーディヒョウム(図13 日本ではツディクムと発音される Johann Ludwig Wilhelm Thudichum 1829~1901)です。1884年に刊行された ”Chemische Konstitution des Gehirns des Menschen und die Tiere (Chemical constitution of the brain)” という本に記載されているようですが私は読んでおりません。

竹富保の「"神経化学の父"ツディクム」という文献が廃刊となった「自然」誌にあります(11)。 ドイツ生まれで、主にイングランドで仕事をしたトゥーディヒョウムは多才な人だったようで、ウィキペディアにはお料理の本を出版しているという記載があります。山川民夫はトゥーディヒョウムの故郷であるビューディンゲンで記念碑の除幕式に出席したそうです(12)。

A_15

アラキドン酸(5,8,11,14-Eicosatetraenoic acid)は図14のとおり何の変哲もない不飽和脂肪酸の1種なのですが、そこからプロスタグランディン、トロンボキサン、ロイコトリエン(すべて総称で特定の化学物質を指しているわけではありません)を生合成する経路が派生しています(アラキドン酸カスケード)。これらの物質は免疫反応と深い関わりがあり、薬学の分野では数十年間、間断なく注目を集めています。

A_14

参照

1)JIFH集計: https://www.jifh.org/joinus/know/population.html

2)厚労省: http://ameblo.jp/kokkoippan/entry-11541237843.html

3)http://www.cyberlipid.org/chevreul/work0003.htm

4)Michel Eugène Chevreul, Recherches chimiques sur les corps gras d'origine animale. (1823)
https://books.google.co.jp/books?id=94_H7hfQfS0C&hl=fr&redir_esc=y

5)福岡大学 脂肪酸の生合成:
http://www.sc.fukuoka-u.ac.jp/~bc1/Biochem/fa-syn.htm

6)https://ja.wikipedia.org/wiki/%E8%84%82%E8%82%AA%E9%85%B8

7)https://ja.wikipedia.org/wiki/%E3%83%88%E3%83%A9%E3%83%B3%E3%82%B9%E8%84%82%E8%82%AA%E9%85%B8

8)https://headlines.yahoo.co.jp/hl?a=20150619-00000009-wordleaf-soci

9)ホートン 生化学第3版 東京化学同人(2003)

10)https://www.youtube.com/watch?v=8RtDw0FKzPk

11)自然 / 中央公論社 vol. 29, 12号、pp.44-52

12)山川民夫 「糖脂質物語」 講談社(1881)

|

2017年3月28日 (火)

生物学茶話@渋めのダージリンはいかが67: 糖タンパク質

糖が生体構成成分となる場合、しばしばタンパク質や脂質と共有結合した複合分子として利用される場合があります。今回は糖とタンパク質の複合体に着目します。谷口直之先生によると「タンパク質のおよそ50%以上には糖鎖が付加されている」そうです(1)。これが多少盛った話だとしても、糖タンパク質が生体内でありふれた存在であることに間違いはありません。

糖がタンパク質と共有結合する場合に通常2つの方法があって、ひとつはN-結合型、いまひとつはO-結合型です(2)。N-結合型の場合、タンパク質のアスパラギンの側鎖アミノ酸の窒素原子(N)にグリコシド結合します(図1)。アスパラギンならどれでも良いわけではなく、アスパラギン-(任意アミノ酸)-セリン/スレオニンという配列に限られます。最初の糖鎖は多くの場合N-アセチルグルコサミン(GlcNAc)です。

O-結合型の場合は、タンパク質のセリンまたはスレオニンの水酸基とO-グリコシド結合します。タンパク質と結合する最初の糖鎖は多くの場合N-アセチルガラクトサミンです(図1)。ひとつのタンパク質分子が複数の糖鎖をもつこともありますし、N-結合型とO-結合型の両者の糖鎖をもつこともあります。同じ種類のタンパク質でも糖鎖の付いている分子と付いていない分子がありますし、糖鎖が付いていてもその構造が異なる場合もあります。

A


糖には無数のバラエティーがありますが、タンパク質に結合する糖鎖を構成する単糖は、ほぼ図2に示した8種に限られています。これは合成する酵素の自由度やバラエティーに限界があるからでしょう。8種類とは少ないようですが、DNAが4種の塩基で構成されていることを考えると、8種類でも順列組み合わせを考えると膨大な種類の糖鎖ができ得ることは明らかです。この中にアミノ糖が3種はいっていることは特徴的です。N-アセチルグルコサミンはグルクナック、Nーアセチルガラクトサミンはギャルナックとよばれることもあります。1種の愛称のようなものです。

A_2


N-グリコシド結合を行ってできる糖鎖は3つのグループ、すなわち複合型(コンプレックス型)・高マンノース型(ハイマンノース型)・混成型(ハイブリッド型)に分類できます(3)。いずれもアスパラギンにN-アセチルグルコサミンが結合し、その先図3の破線に囲まれた部分は共通の構造(コア)ですが、さらにその先複合型ではN-アセチルグルコサミン→ガラクトースという順に並び、高マンノース型ではマンノース→マンノース、混成型ではマンノース・N-アセチルグルコサミン・N-アセチルグルコサミン→ガラクトースという3種類構成になっています。

A_3

O-グリコシド結合を行ってできる糖鎖は、N-グリコシド結合の場合よりもバラエティーに富んでいますが、コアは8種類に分類できます(3、4)。いずれもタンパク質のセリンまたはスレオニン残基と最初に結合する糖はN-アセチルガラクトサミンで、α型結合でアミノ酸と結合します。2番目の糖がガラクトース・N-アセチルガラクトサミン・N-アセチルグルコサミンなどとなり、分岐もあるので、8種類のバラエティーが発生します(図4、参照 3、4)。図4下方のエピトープは抗体によって認識される部位(抗原)のことで、血液型については糖脂質のところで述べます。3番目以降は千差万別で、分類する意味も多分ありません。

A_4

これらの糖鎖の構造決定には多くの人々が関わって解明されてきましたが、N-結合型糖鎖の根元、すなわちタンパク質と結合している糖がN-アセチルグルコサミンであることを解明したのはサウル・ローズマン (1921-2011、図4)です(5、6)。彼は「セレンディピティー(思いがけない発見)のプリンス」と呼ばれていたそうです(7)。

A_5

では個別の例についてみていきましょう。まずエリスロポエチンをみてみますと、3ヶ所にN-結合型糖鎖が、1ヶ所にO結合型糖鎖が認められます(図6)。

エリスロポエチンは主に腎臓で合成されるタンパク質ホルモンで、赤血球の増殖や分化を促進します。腎不全が貧血を伴うのは、このホルモンの合成が低下するからです。糖鎖がついていないホルモンも生理活性がないわけではないのですが、糖鎖が付くことによって生理活性が高まり、安定性も増加します。

図6に示された所定の場所に糖鎖が結合することによって最大の活性が得られることが、村上真淑らによって最近証明されました(8)。糖鎖の位置にそこまで遺伝的セレクションがかかっているとは、私にとってはちょっとした驚きでした。腎不全による貧血をエリスロポエチン投与によって治療するというやり方は、かなり以前から行なわれています。

A_6

ムチンは納豆や山芋などネバネバした食品にはたいてい含まれている糖タンパク質ですが、ヒトの粘液などにも含まれており、なんとヒトは20種類以上のムチン遺伝子を保有しているそうです(9)。セリンとスレオニンを多数含んでいるアミノ酸配列なので、O結合型糖鎖が非常にできやすい状態にあり、タンパク質の周りに密林のように糖鎖が生えています(図7)。そのため抜群の水分保持力があり、乾燥を防ぐほか、体表にゲル状に広がっていると感染を防ぐこともできます。粘膜を保護する役割も重要です。これだけ多数の糖鎖に被われていると、タンパク質分解酵素がアクセスしにくくなるので、壊されにくい分子になっています。胃が消化液で消化されないのも、胃粘膜のムチンのおかげなのでしょう。

A_7

最後に細菌の細胞壁に使われているペプチドグリカンをみてみましょう。図8は典型例(黄色ブドウ球菌)ですが、N-アセチルグルコサミンとN-アセチルムラミン酸がひとつのユニットになっており、糖鎖はN-アセチルムラミン酸の乳酸残基にテトラペプチドが結合しています(図8左図)。このユニットがタンデム、およびペプチドを介してラテラルに結合して細胞壁を形成しています(図8右図)。

細菌によって使われている糖の種類も変わり、ペプチドの種類や長さも変わりますが、グラム陽性菌は分厚いペプチドグリカン層で細胞全体が被われており、細胞膜が脆弱であっても生きていけるわけです(4、10)。分厚いペプチドグリカン層がクリスタルバイオレットという色素で染まるので、グラム陽性菌という名前になりました。

A_8

参照

1)理化学研究所 研究紹介: 
http://www.riken.jp/research/labs/grc/sys_glycobiol/

2)IonSource (Mass Spectrometry Educational Resource)
http://www.ionsource.com/Card/carbo/nolink.htm

3)大阪大学 Kajihara Laboratory:
http://www.chem.sci.osaka-u.ac.jp/lab/kajihara/background.html

4)Lianchun Wang, O-GalNAc Glycans:
https://www.ccrc.uga.edu/~lwang/bcmb8020/O-glycans-B.pdf

5)Fabrizio Monaco and Jacob Robbins,  Incorporation of N-Acetylmannosamine and N-Acetylglucosamine into Thyroglobulin in Rat

Thyroid in Vitro.,  J. Biol. Chem., Vol. 248, No. 6,  pp. 2072-2077 (1973)
http://www.jbc.org/content/248/6/2072.full.pdf?sid=b4c0f52f-ec70-497d-b615-fe3651ae6f9b

6)Saul Roseman, The synthesis of complex carbohydrates by multigulycosyltransferase systems and their potential function in

intercellular adheshion. Chem. Phys. Lipids vol. 5, pp. 270-297 (1970)

7)Biologist Saul Roseman, 90, champion of serendipitous discovery
http://archive.gazette.jhu.edu/2011/07/18/biologist-saul-roseman-90-champion-of-serendipitous-discovery/

8)ResOU: 精密化学合成により調整した糖タンパク質:エリスロポエチンの糖鎖機能を解明
http://resou.osaka-u.ac.jp/ja/research/2016/20160116_1

9)https://ja.wikipedia.org/wiki/%E3%83%A0%E3%83%81%E3%83%B3

10)こちら

|

2017年3月21日 (火)

生物学茶話@渋めのダージリンはいかが66: 多糖類

多糖類はタンパク質と異なり、その構造が遺伝子によって指定されていないので、例えばグリコーゲンといっても、同じグリコーゲン分子はないというくらい多様性があります。これはたとえばケヤキの幹や枝が同じ形の樹木がないのと似ています。それでもケヤキをクスノキや桜と識別できるように、多糖類も構成ユニットである単糖の種類、結合の様式などで分類することはもちろん可能です。1種類の単糖で構成されている多糖類をホモグリカン、複数の単糖で構成されているものをヘテログリカンといいます(1)。

まずホモグリカンの代表として、グルコースだけで構成される多糖類をみていきましょう。私たちが主食としている米や芋の主成分はでんぷんです。デンプンは主に植物によってつくられる多糖類で、α-1,4-結合でグルコースが直鎖状に重合したアミロースと、α-1,4結合だけでなく、ところどころでα-1,6-結合で分岐しているアミロペクチンがあります(図1)。

お米の場合、うるち米はアミロースとアミロペクチンがおよそ2:8なのに対して、「もち米」はアミロペクチンのみでアミロースを含んでいないので、枝分かれ構造のあるアミロペクチンがお餅の粘りのもとなのでしょう(3)。アミロースもアミロペクチンもα-D-グルコースだけが重合したもので、β-D-グルコースは含まれていません(図1)。

A

デンプンは唾液や膵液に含まれるアミラーゼによって分解されますが、アミラーゼは1種類ではなく、図2のようなα型、β型、γ型、イソ型という4種類があります。α型はいわゆるエンドタイプの分解酵素で鎖の任意の位置で切断します。ただし切断できるのは 1,4 結合のみで、1,6結合(分枝する位置)は切断できません。グルコースダイマーのマルトースは切断できません。

β型は植物などに存在するエクソタイプで、鎖の末端から2つのグルコースをマルトースの形で切り離します。γ型は同じくエクソタイプで、鎖の末端からひとつづつグルコースを切り離します。ヒトの場合マルトースを2つのグルコースに分解する活性も高いとされていて、マルターゼあるいはグルコアミラーゼとも呼ばれています。1,4 結合のみならず1,6結合も分解できるので(4)、αタイプとγタイプのアミラーゼがあればデンプンをグルコースにほぼ分解できます。イソアミラーゼは植物などに存在する酵素で1,6結合を特異的に切断します。

A_2

セルロースはβ-D-グルコースだけが重合した多糖類で、α-D-グルコースは含まれていません(図3)。セルロースは主に植物によって作られますが、草食動物はセルロースを主な栄養分としています。草食動物やシロアリは腸内細菌によってセルロースを分解しており、これらの細菌を体内に共生させることによって生体の素材やエネルギーを得ているわけです。

セルロースはβ-D-グルコースがβ-1,4-結合によって重合した直鎖状のポリマーですが、直鎖同士が非常に水素結合をつくりやすい構造になっているので、シート状の形態になります(図3)。構造は非常に安定で、熱水や酸・アルカリに溶けません。ヒトはこのことを利用して衣服(コットン)や紙を製造しました。

A_3

細菌などが持つセルロース分解システムは複雑ですが、大まかには図4のような3種類の酵素の作用で行われます。このような分解系を利用してさまざまな有用物質を生産しようとする試みは盛んに行われています(5)。特にセルロースからエタノールを得てエネルギー源にしようとする試みは注目されています。セルロースというタイトルの専門誌も存在します(6)。

A_4

植物がデンプンを貯蔵するのに対して、動物はグリコーゲンを貯蔵します。グリコーゲンはα-D-グルコースが α1,4 および α1,6結合で重合しているという意味ではデンプンと同じです。ただ分岐は非常に多く編目のような構造になっています(図5)。分岐が多いということの利点は、少ない容積に多数のグルコースを詰め込むことができるということです。

もうひとつグリコーゲンに特徴的なのは、最初にグリコジェニンという特異な酵素が働くことです。この酵素は自らが基質となり、自分のチロシンのOHにグルコースを結合させ、そこからグルコース鎖を延長させることができます(7、8)。

A_5

グリコーゲンをつくるための最初の反応は
UDP-alpha-D-glucose + glycogenin ⇌ UDP + alpha-D-glucosylglycogenin

次の反応は
alpha-D-glucosylglycogenin + UDP-alpha-D-glucose ⇌ UDP + alpha-D-glucosylglycosylglycogenin

となります。グルコースにUDP(ウリジン2リン酸)がくっついているのは、反応を進行させるためにグルコースを活性化するというしかけです。

ある程度鎖が延長されるとグリコジェニンはお役御免となり、グリコーゲンシンテースや分岐酵素にバトンタッチして鎖延長や分岐が続行されます。グリコジェニンという奇妙な酵素はクララ・クリスマン、ウィリアム・ウェランらによって発見されました(9-12、図6)。クララ・クリスマンらはUDP-グルコ-スを14Cでラベルして肝臓抽出液に投入してインキュベートすると、トリクロル酢酸で沈殿する分画にラベルが移行し、これによってグルコースオリゴマーがタンパク質に結合していることを示唆しました。ウェランらはこの結合が共有結合であることを証明しました。グリコーゲンがタンパク質と共有結合しているかどうかは、昔激しい論争があったようで、ウェランも刺激的なタイトルの総説を書いています(11)。自分が基質になる酵素というのは他にないわけではなく、たとえばタンパク質分解酵素のなかには自己消化を行うものもありますが、それはある酵素分子が自分自身を消化するという意味ではありません。

A_6
グルコースの誘導体のひとつとしてN-アセチルグルコサミンについては前回述べましたが、N-アセチルグルコサミンがβ-1,4-結合を繰り返してポリマーになったものがキチンです(図7)。節足動物の体表を被う外骨格の素材として用いられています。セルロースと同様に分子間の水素結合が強力で、丈夫な線維・シートを形成することができます。創傷治癒のための医療用品・化粧品・衣料・農薬などの素材に用いられています(13)。

A_7

さて私たちオピストコンタと植物(プランタ=アーケプラスチダ)というかけ離れた分類学上の位置にある生物が似たような多糖類、すなわちデンプンとグリコーゲンをエネルギー源として貯蔵しているのはちょっとした驚きですが、両者と分類学上離れた位置にあり、ストラメノパイルというスーパーグループに属する昆布などはどのような多糖類を合成しているのでしょうか? 

ウィキペディアによると昆布は夏から秋にかけて重量の40~50%を占めるくらい大量のラミナランという多糖類を合成して貯蔵しておくそうです。それはやはりグルコースのポリマーなのですが、結合様式が β1,3結合 と β1,6結合 からなっていて、オピストコンタやプランタとは大きく異なっています(図8)。

A_8
ヘテログリカンの代表としてヒアルロン酸を紹介しておきます。ヒアルロン酸はN-アセチルグルコサミンとグルクロン酸がβ-1,4-結合した2糖を基本単位として、これらがβ-1,3-結合で重合したものです(図9)。ヒアルロン酸は主に細胞外に放出されて、細胞間のマトリクスとして存在します。ぬめぬめしたゲルのような性質で、関節がなめらかに動くように機能しています。また皮下の結合組織や眼球の硝子体に多量に存在しますが、これはヒアルロン酸が水を保持する能力に優れ、組織や細胞をひからびさせないようにする作用があるためと思われます。

膝の関節に注入することによって疼痛を軽減できますが、徐々に分解されるので、ある期間が過ぎると追加が必要になります。経口ではほぼ効かないようです(14)。毒性がほとんどないのでシワとりなど美容整形にもよく用いられますが、この場合も徐々に分解することは避けられません。また間違って動脈に針が入ると、血管が詰まって悲惨なことになってしまうので、個人的にはあまりおすすめできません。

A_9

参照

1)https://kotobank.jp/word/%E3%82%B0%E3%83%AA%E3%82%AB%E3%83%B3-764487

2)ホートン 生化学第3版 p.183 東京化学同人(2002)

3)JA全農やまぐち http://www.yc.zennoh.or.jp/rice/mamechishiki/mame01-4.html

4)酵素辞典 http://www.amano-enzyme.co.jp/jp/enzyme/4.html

5)三重大学 http://www.bio.mie-u.ac.jp/~karita/sub3.html

6)http://link.springer.com/journal/10570

7)畠山巧 ベーシック生化学 第11章 グリコーゲン代謝と糖新生

8)https://en.wikipedia.org/wiki/Glycogenin

9)Krisman CR, Barengo R., A precursor of glycogen biosynthesis: alpha-1,4-glucan-protein. Eur. J. Biochem. vol.52, pp. 117–23 (1975)  doi:10.1111/j.1432-1033. 1975. tb03979.x. PMID 809265

10)Whelan WJ., The initiation of glycogen synthesis. BioEssays vol.5, pp. 136-140 (1986)

11)Whelan WJ., Pride and prejudice: the discovery of the primer for glycogen synthesis., Protein Sci. vol.7, 2038–2041 (1998)  doi:10.1002/pro.5560070921. PMC 2144155Freely accessible. PMID 9761486

12)Whelan WJ., My Favorite Enzyme Glycogenin., IUBMB Life, Vol. 61, pp. 1099-1100 (2009)

13)キチン・キトサン利用技術: http://www.inpit.go.jp/blob/katsuyo/pdf/chart/fkagaku19.pdf

14)変形性膝関節症: http://www.jcoa.gr.jp/health/clinic/knee/koa.pdf

|

2017年3月13日 (月)

生物学茶話@渋めのダージリンはいかが65: 糖質

生体は核酸とタンパク質だけでできているわけではなく、糖質や脂質ももちろんその構成要素です。糖質の構造の基本は19世紀末に、ここにも何度も登場しているエミール・フィッシャーによって明らかにされ、構造式の書き方も彼が考案したものが現在も使われています(1)。糖質でやっかいなのは異性体が非常に多いことで、きちんと整理しておかないと混乱します。

糖の話に入る前に、図1に異性体のおおまかな分類を示します。

A

1.異性体:異性体(isomer)とは、同じ数、同じ種類の原子を持っているが、違う構造をしている物質のこと。

2.構造異性体:構造異性体(structural isomer)とは、組成式は等しいが原子の間の結合関係が異なる分子のこと。ブタンと2-メチルプロパン:組成式はともに C4H10 であるが、ブタンの構造式は H3C-CH2-CH2-CH3 であるのに対し、2-メチルプロパンは H3C-CH(CH3)-CH3 です。

3.立体異性体:立体異性体(stereoisomer)は、同じ構造異性体同士で、3次元空間内ではどう移動しても重ね合わせる(スーパーインポーズする)ことができない分子。

4.鏡像異性体:鏡像異性体(enantiomer)とは立体異性体のうち、左手と右手のように鏡に映した形の分子を意味し、鏡像異性体をもつ分子をキラル分子といいます。炭素原子が持つ4価の共有結合の相手がすべて異なる場合、必ず鏡像異性体があり得るので、このような結合を行っている炭素を不斉炭素(キラル炭素)といいます。例えばアラニンは不斉炭素にNH2、CH3、H、COOHという4種のグループが結合しているので、LアラニンとDアラニンという互いに鏡に映した形の鏡像異性体が存在します。

5.ジアステレオマー(Diastereomer):立体異性体のうち鏡像異性体でない分子。シス-トランス異性体などはジアステレオマーです。

糖類を代表する分子としてまずグルコースをとりあげましょう。グルコースは水溶液中では図2のように、α型とβ型の環状体と中央の鎖状体の3つの形が平衡状態にあります。鎖状体はα型またはβ型に対して構造異性体、α型とβ型は立体異性体ということになります(1、2)。α型とβ型を互いにアノマーであるという表現も用いられます。

A_2

鎖状構造のグルコースの異性体に着目してみます(図3)。上から炭素に番号を付けると、2番目から5番目の炭素が不斉炭素です。ここで5番目の炭素の左右と下の構造を固定し(赤で示したOHが右にある)、上だけ可変とすると、図3のように8種類の異性体が考えられます。それぞれの異性体に鏡像異性体が存在するので16の異性体が存在します。5番目の炭素のOHを左側にもってくると異性体の数は32となります。それぞれの異性体には名前があります(3)。フィッシャーは当時の研究法で III がグルコースであることを示しました。

A_3

グルコースには図2で示した3つの形があるので、32x3=96の異性体があることになります。さらにいす型やふね型の立体配座の異性体があるので(4)、それらをカウントすると、とんでもない数になります。糖質のおそるべき複雑さを垣間見ましたが、自然界に存在するグルコースはほとんどが図3-IIIの5番目のCの右側にOHがあるD体です(5)。アミノ酸の場合H2N-C-COOHと書いて、Cの下にHを書きます。これがL体。糖の場合H-C-OHと書いて、Cの下にCH2OHと書きます。これがD体です。歴史的には結晶に光を照射したときに、右にまがる(dextro-rotatory)か左にまがる(levo-rotatory)かで判定されました。もっと理論的な命名法がRS法ですが、ここでは説明しないので知りたい方は文献(6)を見て下さい。アミノ酸と糖に関してはDL法が一般的です。

グルコースのようにひとつの環でできている糖を単糖とよびます。単糖にはグルコースのように5つのCとひとつのOで構成される環が基本となっているヘキソースと、リボースやキシロースのように4つのCとひとつのOで構成される環が基本となっているペントースが存在します(図4)。この6員環(5C+1O)をピラン、5員環(4C+1O)をフランとよびます。ピラン環でもフラン環でもOと結合している炭素はO以外にC・H・OHと結合している場合不斉炭素であり、HとOHが上下逆のα型とβ型を生じます。リボースはRNAの構成成分ですが、2の位置のOHがHに変わったデオキシリボースはDNAの構成成分です。デオキシリボースのような糖を一般にデオキシ糖とよびます。

A_4

グルコースの2の位置のOHはアミノ基と置換されることもあり、この場合はグルコサミンとよばれます。一般的にOHがアミノ基と置換された糖をアミノ糖といいます。またアミノ基がアセチル化された場合、N-アセチルグルコサミンとよばれます。グルコサミンやN-アセチルグルコサミンは後に述べる複合糖質・ヒアルロン酸・糖脂質の材料として重要な物質です。グルコサミンはサプリメントとしても有名ですが、関節症などに効くかどうかは疑わしいと考えられています(7)。

A_5

鎖状の糖の上端に書かれたアルデヒドのOと下端のCH2OHのH2のうちひとつのHが失われて環状化するとラクトンが形成されます。グルコースの場合グルコノラクトンとなります。このグループの化合物にはビタミンC(アスコルビン酸)という人類には必須の物質があります(図6)。ビタミンCはグルコースからやや複雑な経路で合成されます(8)。ビタミンCは私たちの体の中でコラーゲン合成、スーパーオキサイドの除去などの重要な役割を果たしています。

私たちはビタミンCを体内で合成できません。私たちの祖先のサルが果実を主食としてビタミンCを日常的に外界から得ていたため、合成経路をになう酵素が突然変異したまま活性が失われたと考えられています。霊長類の中でも、キツネザル・アイアイ・ロリスという原始的なグループはビタミンCを合成することができますが、ヒトを含めたそれ以外のグループは合成できません。

A_6

さて単糖だけでも膨大な異性体が存在するわけですが、これが2糖となるとそのかけ算となる上多彩な結合が存在しますから手に負えません。とはいえスキップするのもどうかと思うので、少しだけ紹介しておきます(図7)。グルコース+グルコースでできている麦芽糖(マルトース)は、デンプンがαまたはβアミラーゼによって分解されたときに生成する2糖類です。甘味料の他点滴にも使用されています。急激な血糖値の上昇を防ぐには2糖が有効です。麦芽糖はαグルコシダーゼの作用によって徐々に分解され、2分子のグルコースになります。

A_7

ショ糖(シュークロース)はグルコース+フルクトース(フラクトース)で構成される、自然界に最も多量に存在する2糖です。自然界では植物だけが合成できる化合物です。動物はインベルターゼという酵素でグルコースとフルクトースに分解して利用することができます。

どうしてサトウキビやテンサイがショ糖を大量に蓄積するのか、調べましたがわかりませんでした。私が想像するに、ショ糖はデンプンなどと違って草食動物に対して歯を溶かすなどなんらかの毒性があり、サトウキビやテンサイを好んで食べる動物に危害を与えて、それらの動物に食べ尽くされるのを防いでいるのかもしれません。

A_8

糖の正式な命名法は(9)を参照していただくことをおすすめします。ただIUPACが推薦する正式名称は、専門家が論文を書くときに使うくらいで、あまり普及しているとは言えないと思います。

参照

1)http://受験理系特化プログラム.xyz/organic/fischer-3

2)グルコースの構造式:
http://sci-pursuit.com/chem/organic/glucose_structure.html

3)32コの異性体:
http://ameblo.jp/apium/entry-10212514628.html

4)https://ja.wikipedia.org/wiki/%E3%81%B5%E3%81%AD%E5%9E%8B

5)http://kusuri-jouhou.com/creature1/suger.html

6)立体配置の記述法:
http://www.chiral.jp/main/R%26S.html

7)Wandel, Simon; Jüni, Peter; Tendal, Britta; Nüesch, Eveline; Villiger, Peter M; Welton, Nicky J; Reichenbach, Stephan; Trelle, Sven (2010). “Effects of glucosamine, chondroitin, or placebo in patients with osteoarthritis of hip or knee: network meta-analysis”. BMJ 341. doi:10.1136/bmj.c4675. ISSN 0959-8138.
http://www.bmj.com/content/341/bmj.c4675

8)ビタミンCの真実:
http://www.vit-c.jp/vitaminc/vc-02.html

9)http://nomenclator.la.coocan.jp/chem/text/carbohy.htm

|

2017年3月 6日 (月)

生物学茶話@渋めのダージリンはいかが64: 制御タンパク質他

数回にわたってタンパク質とは何かをざっくり述べてきましたが、最後に「制御因子他」のジャンルに属するものについてふれておきましょう。

酵素などは基本的には作られる量と壊される量によって制御されています。その他に他の酵素によって修飾されたり、ビタミンや生成物などの低分子物質によっても制御されます。しかし中にはわざわざ自分の活性を制御する専門のタンパク質が遺伝子として存在するようなラグジュアリーな酵素も存在します。ODC(オルニチン脱炭酸酵素)はそのひとつです。

オルニチンはすでに述べたように(1)、尿素サイクルに含まれる物質で、アンモニアを解毒し排出するうえで重要な位置にありますが、それ以外にODCによってオルニチンはプトレシンに代謝されます。

H2N-(CH2)3-CH(NH2)-COOH(オルニチン) → H2N–(CH 2)4–NH2 (プトレシン)+ CO2

プトレシンを起点として、いわゆるポリアミン類-スペルミジン・スペルミンが合成されます。ポリアミンは精液に多量に含まれますが、その機能は細胞増殖、イオンチャンネルの制御、DNAの安定化など多岐にわたっており、まだ完全には解明されていません(2)。ポリアミンは多すぎても少なすぎても生物が生きていく上で障害になるので、ODCの活性は厳密に制御されなければなりません。余談ですが、そういう意味ではオルニチンをサプリメントとして摂取するのは、体に負担をかけることになるのではないかと危惧されます。

そこで登場するのがODCアンチザイムという制御因子で、このタンパク質がODCに結合することによって、ODCは迅速に分解されます(図1、参照3)。結合状態での分子形態なども報告されています(4)。ODCアンチザイム自身がODCを分解するわけではなく、あくまでもODCの形態(コンフォメーション)を変化させて、タンパク質分解酵素が見つけやすいターゲットにするということです。アンチザイム自身は分解されないので、再利用されます。

A_7

アンチザイムとは違うアロステリックモデュレーターとして機能する因子にもふれておきましょう。図2のように細胞膜を何度も貫通するタンパク質は数多く存在しますが、それらは外界からのシグナル(例えばホルモン)を受けて、分子形態が変化し、細胞内に出ている部分を使って外界からきたシグナルを細胞内に反映させるべく仕事をします。このような機能を正方向(+)あるいは負方向(-)に導くためのタンパク質性制御因子が存在します(図2、参照5、6)。このような制御因子(アロステリックモデュレーター)は膜貫通タンパク質等に結合することによって、その構造を変化させ、機能に影響を与えます。

A_8


制御因子のなかにはDNAと結合して転写を制御しているものもあります。これらは通常転写因子(transcription factor)とよばれています。例えばbZipというタンパク質は、C末側でαヘリックスがロイシンなどを介して結合してダイマーを形成し、N末側ではトングのようにDNAをはさんで転写を制御します(図3)。2本のαヘリックスがジッパーのように重なりあって結合している部位をロイシンジッパーといいます。

A_9

またZif268(またはEGR1)という転写因子は、分子内にジンクフィンガーという部位(図4A)を3ヶ所持っており、その特異な構造を使ってDNAに結合します(図4B)。ジンクフィンガーというのは名前の通り亜鉛原子を抱え込んだ構造で、図4Aでは2つのシステインと2つのヒスチジンが亜鉛原子と結合しています。2つのβシートと1つのαヘリックスを含んだ構造が亜鉛原子によって安定化されているようです(図4B 参照7)

A_10

ロイシンジッパータンパク質やジンクフィンガータンパク質は数多く存在し、またそれぞれがさまざまな遺伝子を発現させるために必要なので、機能によって分類や命名ができないため、酵素などと違って暗号のような名前になっています。タンパク質分子をいくつかの領域に分けて、それぞれをドメインとよぶことがあります。その場合ロイシンジッパードメインとかジンクフィンガードメインなどとよばれます。

もうひとつ、bHLH(basic helix-loop-helix)というドメイン(図5A)をもつ転写因子について述べておきます。このドメインは図5Aのように、2つの短いαヘリックスがループ状の構造でつながっています。このグループを代表する転写因子はMyoDです。MyoDはE12という別の転写因子とヘテロダイマーを形成して2本足のような構造をつくり、塩基性アミノ酸を使ってDNAと結合します(図5B)。

A_11

MyoDは R.L. Davis らが発見した元締め的転写因子で、筋肉形成という極めて複雑なプロセスにゴーサインを出すマスター制御因子とされています(8、9)。発生の途中で未分化細胞を筋細胞に分化させるだけでなく、例えば筋トレをしたときもこれが発現して筋肉が増強されると考えられています。将来工場で細胞を分化させて食糧を製造するというようなことがあるとすれば、MyoDはキーファクターとして使われるかもしれません。

転写因子にはこれらの他にも非常に多くの種類があり、きりがありませんが、細胞がそれぞれ特徴を出すためにどの道を行くか決めるハンドルのようなものです。ノーベル賞の山中4因子(Oct3/4、Sox2、Klf4、c-Myc)もすべて転写因子です(10)。これらはいったん来た道を逆行して元に戻るプログラムを進行させる因子とも言えます。

最初に 「制御因子他」 と書きましたが、「他」 というのは例えばヘモグロビンです(図6)。ヘモグロビンは(グロビン+ヘム)x4で構成されるタンパク質で、グロビンも含めると真核生物のみならず、酸素を利用する生物には細菌も含めて広範囲に分布しています(11)。このタンパク質は酵素でも、構造タンパク質でも、制御因子でもなく、酸素や二酸化炭素を運搬する担体として使われています。

A_12

そのほかにもリボソームというタンパク質製造マシーンではRNAと共に100種類近いタンパク質が、そのパーツとして働いています。メッセンジャ-RNAを製造する工場であるスプライソソームでも多くのタンパク質がそれぞれ役割を果たしています。すなわち酵素・構造タンパク質・制御因子以外にも重要な役割を担っているタンパク質は数多く存在します。

参照

1)http://morph.way-nifty.com/grey/2016/05/post-8705.html

2)栗原新、ポリアミンのとても多彩な機能、生物工学会誌 vol.89,p.555 (2011)
https://www.sbj.or.jp/wp-content/uploads/file/sbj/8909/8909_biomedia_3.pdf

3)村上安子, 松藤千弥、迅速なポリアミン制御を可能にするオルニチン脱炭酸酵素の分解系、化学と生物 Vol. 39, No. 3, pp.171-176 (2001)・・・アンチザイム
https://www.jstage.jst.go.jp/article/kagakutoseibutsu1962/39/3/39_3_171/_pdf

4)Hsiang-Yi Wu et al., Structural basis of antizyme-mediated regulation of polyamine homeostasis. Proc Natl Acad Sci USA, vol. 112 no. 36, pp. 11229–11234 (2015)
http://www.pnas.org/content/112/36/11229.full.pdf

5)Lauren T. May, Katie Leach, Patrick M. Sexton, and Arthur Christopoulos, Allosteric Modulation of G Protein-Coupled Receptors
Annual Review of Pharmacology and Toxicology  Vol. 47, pp. 1-51 (Volume publication date 10 February 2007)
http://www.annualreviews.org/doi/10.1146/annurev.pharmtox.47.120505.105159

6)J.N. Kew, Positive and negative allosteric modulation of metabotropic glutamate receptors: emerging therapeutic potential., Pharmacol Ther. vol.104(3), pp. 233-244 (2004)
https://www.ncbi.nlm.nih.gov/pubmed/15556676

7)https://ja.wikipedia.org/wiki/%E3%82%B8%E3%83%B3%E3%82%A%E3%83%95%E3%82%A3%E3%83%B3%E3%82%AC%E3%83%BC

8)Robert L. Davis, Harold Weintraub, Andrew B. Lassa, Expression of a single transfected cDNA converts fibroblasts to myoblasts.
Cell, Vol.51, Issue 6, pp. 987–1000 (1987)

9)Ma, P.C.,Rould, M.A.,Weintraub, H.,Pabo, C.O.Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell vol.77, pp. 451-459 (1994)

10)iPSビズ ヤマナカファクターとは http://ips 細胞.biz/dic/30.html

11)https://ja.wikipedia.org/wiki/%E3%83%98%E3%83%A2%E3%82%B0%E3%83%AD%E3%83%93%E3%83%B3

|

2017年2月28日 (火)

生物学茶話@渋めのダージリンはいかが63: 構造タンパク質

タンパク質をその役割で分類すると、最もおおざっぱには酵素、制御因子、構造タンパク質、その他ということになります。構造タンパク質を代表するものとして、アクチンとミオシンがあります(ミオシンは酵素でもありますが)。これらは筋肉の主成分であり、肉食動物はこの2種類のタンパク質を主な栄養源として生きています。人間は雑食ですが、多くの人々は穀物(炭水化物)の他に、特に南米などではアクチンとミオシンを主要な栄養源としています。日本人も次第にそのようなライフスタイルに近づきつつあります。動物を殺さなくても美味な食事ができるようになれば、人間はもう少し高尚な生物になれると思いますが、エミール・フィッシャーの夢はなかなか実現しそうにありません。

生物が生物であるためには、生物と外界との間に仕切りが必要ですが、それは脂質が中心となった細胞膜です。細菌や植物はその外にさらに多糖類でできた細胞壁という構造を持っています。細胞壁はいわゆる動物にはありません。脂質の膜は細胞の内部にもあり、コンパートメントや物質輸送の役を果たしています。

ではタンパク質は細胞の構造形成にどのような役割を果たしているのでしょうか。ひとつは家で言えば柱とか梁のような、細胞に一定の形をとらせることです。とは言っても静的な恒久構造ではなく、ダイナミックに変化します。例えば筋肉は休んでいるときと、力を出しているときでは形態が異なります。もうひとつは細胞分裂を実行する構造ツールとしてタンパク質が機能するということです。

これらに関与しているタンパク質はほぼ3つのグループ、すなわちチュブリン、アクチン、中間系線維(繊維でもよい)に分類できます。この3つのグループは、細菌・古細菌・真核生物のすべてに存在するユニバーサルなタンパク質です。

細菌では図1のように、チュブリン系のFtsZは細胞分裂の際にZリングという構造を作って細胞と細胞の仕切りを形成する役割を果たしています。

アクチン系のMreBは細胞膜の直下に、細胞の全長に及ぶ繊維構造からなる螺旋状のネットワークを形成しており、細菌がロッド状の形態をとるために必要な役割を果たしています。またある種の細菌では真核生物の場合と同様、収縮リングをつくって細胞分裂を実行する役割を担っているようです(図1)。

中間系繊維グループのクレセンチンは、細胞が三日月のある種の細菌に存在し、細胞を屈曲させる役割を果たしています(図1)。人間の胃に住んでいるヘリコバクター・ピロリ、いわゆるピロリ菌もこの仲間のようです。栄養リッチな環境に住んでいる細菌は、その場所から流されたくないので、ひっかかりやすい構造をめざしたのでしょうか? 細菌の細胞骨格については、ウィキペディアにもう少し詳しい解説があります(1)。

A_4

真核生物におけるチュブリンは毛利秀雄(1930~、図2)によって発見・命名された分子量約5万の球状タンパク質で(2)、通常重合して微小管などの構造を形成しています。αチュブリンとβチュブリンは図3のようにヘテロダイマーαβを形成し、さらにそのヘテロダイマーが連結して線維状のプロトフィラメントを形成し、13本のプロトフィラメントが集合して管になったような形の微小管が形成されます(3)。微小管の直径は約25nmです。

A_2

A_5

精子の鞭毛を輪切りにすると、中心にある1対=2本の微小管を、9ペア=18本の微小管が取り囲むという美しい規則的な構造になっています。微小管の周囲に存在するダイニンはATPが持つ化学エネルギーを運動エネルギーに変換することができるタンパク質(モータータンパク質)であり、これらの作用によって精子は鞭毛を動かし、泳いで卵に到達することができます(図4)

A_6

アクチンはF.B.シュトラウプ(1914-1996、図2)によって発見された、分子量約4万2千の球状タンパク質です(4)。微妙に異なる6種類があり、冒頭で述べた筋肉を作るタイプのものとは異なるβ型アクチンは、重合してマイクロフィラメントという直径6nm前後の線維を形成し、微小管と同様細胞骨格の役割を果たしています(図5)。アクチン自体はモータータンパク質ではありませんが、ATPやADPと結合することによって線維形成が制御されています(5、6)。

A_7

細胞形態がいかにチュブリンやアクチンに依存しているかということは、図6をみれば一目瞭然です。細胞質の中は微小管やマイクロフィラメントのジャングルジムのようです。これらの細胞骨格はジャングルジムと違ってフレキシブルで、次の瞬間には別の形になることもあります。微小管やマイクロフィラメントは常に多くの分子が参加したり離脱したりしているので、細胞の柱や梁といっても、非常に流動的なパーツではあります。

A_8

細胞骨格にはもうひとつの要素、すなわち中間径線維があります。中間径というのは線維の直径が微小管とマイクロフィラメントの中間という意味で、約10nmのサイズになります。中間径フィラメントを構成するタンパク質には、ケラチン、ニューロフィラメントタンパク質、デスミン、ビメンチン、ラミンなどがあり、細胞の種類によって特異性があります。ミオシンもこのグループに近いタンパク質です。

中間径線維の代表としてケラチンに注目してみましょう。ケラチンは毛髪・爪・表皮・角・くちばし・ウロコなどの主成分となるタンパク質です。ケラチンはヒトのものだけでも54種類あり、まだ増えるかもしれません(7、8)。ケラチン分子は細長い線維性(フィブラス)の分子で、図7のように4量体(テトラマー)をつくり、それを基本単位としてタンデムに結合してマイクロフィラメントが形成されます。8本のマイクロフィラメントが集合してマイクロフィブリルを形成し、マイクロフィブリルがさらに集合して毛や皮膚などの細胞に充満しています(図7)。

A_9

図8は私が撮影した毛の断面の電子顕微鏡写真で、まだ完全にケラチン線維で埋め尽くされていない未分化な下部の構造です。ケラチン線維の束(マイクロフィブリルまたはミクロフィブリル)の間に隙間がまだみられます。

A_10

筋肉は中間径線維グループに近縁のミオシンと、全く別オリジンのアクチンなどのタンパク質が共同して作った驚異的な芸術的作品です。筋肉によって動物は歩行し、呼吸し、消化し、出産し、飛翔し、遊泳し、目のピントを合わせ、キーボードをたたくことができます。いずれまた話題になると思いますので、ここでは1枚の私が撮影した電子顕微鏡写真だけ貼っておきます(図9)。私の過去記事が(9,10)にありますので、お時間のある方はどうぞ。

A_11

参照

1)こちら

2)Mohri H., “Amino-acid composition of Tubulin constituting microtubules of sperm flagella.”. Nature vol. 217, pp. 1053-1054 (1968)  PMID 4296139

3)Nogales, E., Wolf, S.G., Downing, K.H. , Structure of the alpha beta tubulin dimer by electron crystallography. Nature vol. 391, pp. 199-203 (1998)

4)Straub FB., Actin,  Studies Inst Med Chem Univ Szeged. vol.2, pp. 3–16 (1942)
http://actin.aok.pte.hu/archives/pdf/StudiesII_1.pdf

5)https://ja.wikipedia.org/wiki/%E3%82%A2%E3%82%AF%E3%83%81%E3%83%B3

6)Geoffrey M Cooper, Structure and Organization of Actin Filaments. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA) (2000).
https://www.ncbi.nlm.nih.gov/books/NBK9908/

7)http://www.kuhp.kyoto-u.ac.jp/~pathology/templates/keratin.html

8)片方陽太郎 ケラチン蛋白質の生化学 -構造、機能、そして遺伝子まで-、蛋白質 核酸 酵素 vol. 38, pp. 2711-2722 (1993)
http://lifesciencedb.jp/dbsearch/Literature/get_pne_cgpdf.php?year=1993&number=3816&file=sU0K8gPLUSkWylrPLUS03QAhjDig==

9)ミオシン  http://morph.way-nifty.com/grey/2011/01/post-0d3e.html

10)アクチンの系譜  http://morph.way-nifty.com/grey/2013/09/post-9bba.html

|

2017年2月21日 (火)

生物学茶話@渋めのダージリンはいかが62: 酵素2

第二次世界大戦前までに、酵素はタンパク質であり、生命現象に必要なほとんどの化学変化は、酵素によって触媒される反応であることが明らかになりました。大戦後は酵素の作用機構や制御が主要な課題となりました。

エミール・フィッシャーの古典的な「鍵と鍵穴」説の検証と、新しい概念構築の中心になったのはジャン=ピエール・シャンジュー(1936-)でした。シャンジュー(図1)は学生の頃パスツール研究所のジャコブ&モノー研究室で過ごました。彼はそこでタンパク質は固定した形を持つものではなく、基質や様々な制御因子の影響、オリゴマーの形成などによって形を変えるフレキシブルな物質であることに注目し、アロステリック変化という概念を提出しました(1)。この理論はダニエル・コシュランド(1920-2007、図1)らによってさらに発展し、「誘導適合説」などが提唱されました。このあたりの事情を知るには、コシュランドが書いたレビューが出版されています(2)。コシュランドは第二次世界大戦中はマンハッタン計画に参加して、原爆製造の仕事にかかわっていました(3)。

A

簡単に説明すると、図2のように「鍵と鍵穴」説ではもともと鍵にぴったり合った鍵穴があることになっていますが、「誘導適合」説では、基質の接近によって酵素が形態(コンフォメーション)を変えて、基質を取り込むということになります。

またこのコンフォーメーションの変化に伴って、ケミカルアタックを行うサイト(catalytic site、図2の赤のサイト) が基質と接近して活動を行うことができるようになります。このサイトは2ヶ所に分かれていて、サイト-基質-サイトという形で電子や原子の受け渡しを行ないます。

A_2

では具体的にトリオースリン酸イソメラーゼを例にとって。酵素反応の機構をみていきましょう(4)。この酵素はジヒドロキシアセトンリン酸(DHAP)をD-グリセルアルデヒド3リン酸(GAP)に代謝するときに利用されます。これはグルコースをピルビン酸に代謝する解糖経路の要所にある重要な反応です。ケトンをアルデヒドに変換する反応のひとつという見方もできます(図3)。

A_3

酵素のポケット(鍵穴)に取り込まれたDHAPは、まずグルタミン酸側鎖COO-の電子をうけとってC1とC2の結合を二重結合化します。このときC1とC2はそのままでは共に5価になってしまうので、C1はHをひとつ手放し、C2は酸素との二重結合を一重結合化します(図4、図5)。

A_4

C2と二重結合していたOの解放された電子はヒスチジン側鎖のNHに攻撃を仕掛け、Hを奪い取ります(図5)。

A_5

Hを奪い取られたヒスチジン側鎖のNはC1からHを奪い返します(図6)。

A_6

C1は酸素との結合が二重結合になってしまうので5価となり、C2との二重結合を一重結合にします。この結果C2は3価となるので、グルタミン酸側鎖のカルボキシル基からHを奪って4価にもどします。

A_7

因果は巡って、結局GAPが生成され、95番のヒスチジン側鎖と165番のグルタミン酸側鎖も元通りに戻ります。すなわち酵素トリオースリン酸イソメラーゼはもとのままで、DHAP→GAPの化学反応が遂行されました。

A_8

これはわかりやすいですが単純化された仮説で、実際にはもっとさまざまな活性部位周辺のアミノ酸が反応に関与していると思われます。

さてすべての酵素は基質濃度だけに反応して、役目を果たすのでしょうか? 生命体に必要な生体分子の濃度は制御されているはずなので、基質をほとんど使い切るまですべての反応が進行するということは考えられません。実際酵素には阻害物質を利用して、反応生成物を適度な濃度で管理するという機構がしばしば存在します。

最も単純なのは図9のように、基質と同じ鍵穴にアクセスできる別の鍵があり、その鍵が先にはまってしまうと基質は鍵穴にアクセスできなくなるというメカニズムです。すなわち基質と阻害剤が同じサイトに競合してアクセスしようとするわけですから、どちらがアクセスできるかはそれぞれの濃度に依存します。したがってもし大過剰の基質を投入すれば、阻害剤の影響は無視できる程度に低下するはずです。このような単純競合の場合、タンパク質自体の立体構造の変換を伴わないので、アロステリック制御とは言えません。


A_9

しかし図10の場合のように、阻害剤がアクセスする別のサイト(鍵穴)があって、そこに阻害剤がアクセスすると基質の鍵穴が変形して使用不能になるとすれば、これはアロステリック制御のひとつであり、このようなケースでは基質を大過剰にしても反応は抑制されることになります。この非拮抗阻害と呼ばれる方式ですと、阻害剤が高濃度に存在すると反応が完全に停止するので、反応を再開するには阻害剤が代謝されてしまうことが必要になります。


A_10
阻害の様式にはもうひとつ、不拮抗阻害というのがあり(図11)、この場合フリーの酵素に阻害剤はアクセスすることができず、基質が結合した酵素にしかアクセスできません。阻害剤がアクセスに成功すると、基質結合部位がアロステリック効果により変形して基質が結合できなくなります。阻害剤がアクセスするまでの時間的余裕があるので、基質があればある程度反応は進行し、その後阻害されるということになります。

A_11

阻害剤という反応進行に負の影響を及ぼす因子について述べてきましたが、このような阻害剤による負のアロステリック効果だけでなく、正のアロステリック効果も存在します(図12)。この場合、正のAE(アロステリックエフェクター)が酵素にアクセスすることが引き金になって、基質結合部位が形成され反応が開始します。

酵素反応は一般に無制限に進行することは許されず、特定のタイミングで適切な量の反応生成物を得ることを目的としています。細胞外に放出されるペプシンですら、胃に食べ物がないときには放出されないように制御されています。酵素反応をいかに制御するかということは、生命現象の本質と言えるでしょう。

A_12

一連の酵素反応の結果生成された最終反応生成物が阻害因子となって、自らを生成した酵素反応カスケードを停止させるという場合があり、これをフィードバック制御といいます(図13)。例えばアスパラギン酸トランスカルバモイラーゼは最終反応生成物であるCTPによって阻害されます(5)。このような負のフィードバック制御が一般的ですが、なかには最終反応生成物が一連の反応を加速させる場合もあり、これは正のフィードバック制御です。途中で神経伝達が関与していますが、オキシトシンが分泌されて子宮収縮=分娩が促進されるような場合がその1例と考えられます。

A_13

参照:

1)Monod, J.; Wyman, J.; Changeux, J. P. On the Nature of Allosteric Transitions: A Plausible Model. Journal of Molecular Biology. vol.12, pp.88-118 (1965). doi:10.1016/S0022-2836(65)80285-6. PMID 14343300.

2)Daniel E. Koshland Jr., The Key-Lock Theory and the Induced Fit Theory. Angewandte Chemie col.33, pp.2375-2378 (1995)

3)https://en.wikipedia.org/wiki/Daniel_E._Koshland_Jr.

4)http://www.proteopedia.org/wiki/index.php/Triose_Phosphate_Isomerase_Structure_%26_Mechanism

5)Berg JM, Tymoczko JL, Stryer L., Biochemistry 5th edn. Section 10.1, W. H. Freeman (2002)
https://www.ncbi.nlm.nih.gov/books/NBK22460/

|

2017年2月15日 (水)

生物学茶話@渋めのダージリンはいかが61: 酵素1

A酵素を誰が発見したのかというのは、やや難しい問題です。歴史をたどっていくしかないようです。

1752年、フランスの科学者ルネ・レオミュール(René-Antoine Ferchault de Réaumur、1683-1757、図1)は、消化されなかった食べ物を吐き出す習性があるトンビに目を付け、金網で囲った肉を食べさせて、はき出した金網の中の肉が溶けていたことを確認ました。さらにスポンジ(当時のことですから海綿)を食べさせて、はき出したスポンジから胃液を集め、その胃液に肉片を浸すことで肉片が溶けることも観察しました(1、2)。

この結果からレオミュールは、胃液には肉を分解する物質が含まれると考えました。

レオミュールという人は偉大な昆虫学者で、全六巻からなる大著「昆虫誌」(3)を出版しました。もちろんフランス語ですが、オープンライブラリーで閲覧可能なようです。

レオミュールの観察を受け継いだのは、イタリア人のラッザロ・スパランツァーニ(Lazzaro Spallanzani, 1729- 1799、図2)という人でした。

彼はレオミュールの実験をさまざまな動物で追試し、吐き出した海綿中に消化を行う物質があることは間違いないという確信を持ちました。それからが彼の異常なところで、1776年に同じ実験を自分自身の体を使って追試してみようと考えたのです。といっても思いつきでやってみたのではなく、イヌやヘビに布袋を飲ませようとしてかみつかれるなどの困難に直面した後の苦渋の決断だったようです。

A_2スパランツァーニはまず研究ず布袋にパンを入れて飲み込み、排泄された布袋の中からパンが無くなっていることを観察しました。

次に竹を削って木筒をつくり、そのなかにパンや肉片を入れ、小さな穴を開けた木筒を布袋に入れて飲み込みました。出てきた木筒の中の食物はなくなっていました。

これによって胃ですりつぶされて食物が粉々になったためになくなったわけではないことが証明されました。木筒に骨を入れた場合は、消化されずにそのまま出てきました。

このような実験を多数繰り返して、スパランツァーニは胃には鳥類の砂嚢のように食べ物を粉々にする作用はなく、胃液に含まれる因子によって食べ物が消化されるのだという確信を持ちました。

しかしもう一押し、胃液を取り出して、その中で食べ物が消化されるのを見たいと思うのは、科学者として必然のなりゆきでしょう。そこからがまた彼の凄いところで、指をノドに突っ込んで自分の胃液をはき出すトレーニングをして実行したのです。そして実際に自分の胃液の中で肉が消化されるのを観察しました。それは腐敗とは違うことも確認しました。さらに前記の肉片の入った木筒を飲み込み、しばらくして吐き出すという名人芸も会得し、中を調べてみると肉片が消化されかかっていました。

A_3スパランツァーニが一連の自分の体を使った人体実験から得た結論は、「消化は機械的粉砕や微生物による腐敗や発酵ではなく、胃液が促進する通常の化学反応だ」 というものでした。

彼の功績は「自分の体で実験したい」という本に詳しく記してあります(4)。この本の表紙を図3に示しました。布袋を飲み込みつつあるスパランツァーニの姿が表紙になっています。

この本にはスパランツァーニ以外にも、自分をモルモットにして命がけで実験をした大勢の科学者の業績が記されています。命を落とした人もいるということで合掌・・・・・。

18世紀におけるレオミュールやスパランツァーニの偉大な実験にもかかわらず、多くの科学者が酵素の存在を確信するまでには、さらに1世紀もの長い時間が必要でした。

19世紀に入ると、まずパヤン Anselme Payen (1795‐1871) とペルソ Jean Francois Persoz (1805‐68)(図4) が、麦芽抽出液からデンプンをグルコースに分解する酵素を分離しジアスターゼと名付けました(1833年、5)。これは現在ではアミラーゼと呼ばれています。

A_19

スパランツァーニの研究もいくつかの研究室で引き続き発展しました。1834年ヨハン・エベールは乾燥させた胃の粘膜から消化能力のある溶液を調製することに成功しました。その溶液で処理すると、卵白アルブミンは溶けてしまうだけではなく、検出できなくなりました。

細胞説で有名なテオドール・シュワンはエベールの実験結果に注目し、1836年に胃液に含まれる成分がアルブミン以外のタンパク質も分解することを確認して、ペプシンと命名しました。しかしそのペプシンを精製することはできませんでした。

19世紀の生化学で優勢だったのは、パスツールが証明した「生物は生物からしか生まれない、そして発酵や腐敗は微生物によって行われる」という考え方で、消化もやはり微生物の作用あるいは何らかの生命力によると思われていましたが、一方でパヤン&ペルソらの酵素の作用による有機物の化学変化もまた無視できないという隔靴掻痒の状況にありました。

A_5そうした中で、1897年エドゥアルト・ブフナー(Eduard Buchner, 1860- 1917、図5)がすりつぶした酵母をろ過した抽出液(無細胞抽出液)の中で、糖が発酵してアルコールと二酸化炭素になることを発見したことは大きな衝撃でした(6)。すなわち生きた細胞がいなくてもアルコール発酵が行われることが証明されたことになります。

これで生気説は否定され、有機物の生成や分解も普通の化学変化にすぎないという考え方が勝利しました。ブフナーは1907年にノーベル化学賞を受賞しました。しかしその10年後に第一次世界大戦で従軍し、戦死しました。

最終的に酵素がタンパク質であるということが証明されたのは20世紀も深まってからでした。

1919年に米国の化学者ジョン・ノースロップ(John Howard Northrop, 1891- 1987、図6)はペプシンを単離して結晶化し、それがタンパク質であることを証明しました(7)。ノースロップは1946年にノーベル化学賞を受賞しています。

A_6
結論的に言えば、酵素の発見は誰がというより、ここで述べた科学者達を中心とした多くの科学者達が、200年近くの歳月をかけてなしとげた業績です。

酵素の作用機構についてはすでに1894年からエミール・フィッシャーが「鍵と鍵穴」説を発表しており(8)、基本的には現在でも正しいと考えられています。

すなわち酵素には基質(=鍵)を凸とすると凹の形態を持った鍵穴があり、そこに基質を収納すると基質がケミカルアタックを受けて生成物に変化するという考え方です(図7)。

A_7

この過程を、レオノア・ミカエリス(1875-1949)とモード・メンテン( 1879-1960)(図8)は次のような化学式で表現しました。

酵素 (E) + 基質 (S) ⇄   酵素基質複合体 (ES) → 酵素 (E) + 生成物 (P)
E: enzyme, S: substrate, ES: enzyme-substrate complex, P: product

A_10

ここで重要なのはE+S⇄ ESの1段階目の反応は可逆的なのに、2段階目のES→E+Pという反応は不可逆的だということです。もしそうでなければ、デンプンを分解してブドウ糖を生成しエネルギー源として利用しようとしても、ブドウ糖がある程度たまるとデンプンに逆戻りしてしまうという不都合が発生します。ただし生成物が少量で良い時などには、フィードバック制御という別プロセスで酵素に阻害がかかり、反応が停止するということはあります。

酵素は触媒の1種ですが、金属触媒などを用いた無機化学反応と違って、基質濃度を上昇させてもあるところで頭打ちになってしまいます。基質濃度を横軸、反応速度を縦軸としてグラフを描くと図9のようになります。

A_11

1913年にミカエリスとメンテンは、このグラフを数式で表現する、ミカエリス・メンテンの式を発表しました(図10、参照9)。

A_12

図9において、最大反応速度はVmax、その2分の1の反応速度で反応が進行しているときの基質濃度をKmとしています。ミカエリス・メンテン式において、[S] = Km とすると、v = 0.5 x Vmax となります。

ミカエリス・メンテン式の導出のしかたについて興味がある方はサイト(10)を参照して下さい。

本稿でもうひとつ触れておきたいのは、酵素が化学変化の過程において、活性化エネルギーを低下させるということです。

物質Aは自然により自由エネルギーが低い物質Bに変化していくことは、熱力学の第2法則が示していますが、それでも物質Aが存在しているのは、物質Bに変化するために要する時間が無限大に近いことによります。

酵素は物質A(基質=S)が物質B(生成物=P)に変化するために必要な、自由エネルギーが両者より高い中間段階に持ち上げるための活性化エネルギーのレベルを下げる作用を持っています(図11)。このことによって変化に必要な時間を著しく短縮することができるので、生命現象に必要な化学変化を現実的な時間で実行することが可能になるわけです。

A_13

参照:

1)こちら1

2)http://contest.japias.jp/tqj2005/80064/kousohakkenn.html

3)René-Antoine Ferchault de Réaumur, Memoires pour servir a l'histoire des insectes. A Paris : De l'imprimerie royale (1734) 
https://archive.org/details/memoirespourserv01ra

4)「自分の体で実験したい 原題:Guinea Pig Scientists」 Leslie Dendy and Mel Boring 著 梶山あゆみ訳、紀伊國屋書店 (2007)

5)A. Payen and J.-F. Persoz, "Mémoire sur la diastase, les principaux produits de ses réactions et leurs applications aux arts industriels" (Memoir on diastase, the principal products of its reactions, and their applications to the industrial arts), Annales de chimie et de physique, 2nd series, vol. 53, pages 73–92 (1833)

6)Eduard Buchner, “Alkoholische Gärung ohne Hefezellen (Vorläufige Mitteilung)”. Berichte der Deutschen Chemischen Gesellschaft vol. 30,  pp. 117–124 (1897)

7)Northrop J.H., Crystallin pepsin., Science vol. 69, p. 580 (1929)

8)Emil Fischer, Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft, Volume 27, pp. 2985–2993 (1894)

9)Michaelis, L.,and Menten, M., Die kinetik der invertinwirkung, Biochemistry Zeitung vol. 49, pp. 333-369 (1913)

10)https://ja.wikipedia.org/wiki/%E3%83%9F%E3%82%AB%E3%82%A8%E3%83%AA%E3%82%B9%E3%83%BB%E3%83%A1%E3%83%B3%E3%83%86%E3%83%B3%E5%BC%8F

|

2017年2月 9日 (木)

生物学茶話@渋めのダージリンはいかが60: タンパク質の基本2

アミノ酸はアミノ基とカルボキシル基を持っているので、酸性溶液中ではアミノ基がNH3+となって塩基、アルカリ性溶液中ではカルボキシル基がCOOーとなって酸となります。

A

図1は酸性の溶液にアラニンを溶解し、アルカリ(OHー)を加えて滴定したときのpH変化を示したものです。まずpH2あたりで勾配がゆるやかになりますが、このあたりではアラニンは

+HN-CHCH-COOH → +HN-CHCH-COO- + H+

のようになるので、加えたOH-はH+に吸収され、pHの上昇がゆるやかになります。もう1ヶ所、pH10あたりで勾配がゆるやかになりますが、これはこのあたりで

+HN-CHCH-COO- → HN-CHCH-COO- + H+

となってもう1個プロトンが放出されるので、pH上昇がもう一度ゆるやかになります。このような緩衝作用を2ヶ所で発揮するのが、両性電解質の特徴です。アミノ酸によって緩衝作用を発揮するpH領域は異なるので、アミノ酸の混合液は広い範囲にわたって、環境の変化に対してpHを一定に保つ働きがあり、生物に福音をもたらします。

+HNとCOO-が拮抗して存在するpHを等電点といいます。アラニンの場合6.00です。

タンパク質は1分子中に通常多数のアミノ基とカルボキシル基を持っているので、当然アミノ酸と同じく両性電解質です。ペプチド鎖のN末とC末以外のアミノ酸の種類によって、タンパク質の緩衝領域や等電点は著しく変化します。この変化に寄与するのは主として酸性アミノ酸(グルタミン酸とアスパラギン酸)と塩基性アミノ酸(アルギニンとリジン)です(図2)。

A_2

この4種のアミノ酸が持つ側鎖の数によって、タンパク質の性質は大きく変わります。タンパク質の種類によって、例えば等電点には大きなバリエーションがあります(図3)。

A_3

例えばリゾチーム(ニワトリ卵白)という酵素のアミノ酸配列をみますと、塩基性アミノ酸の数が酸性アミノ酸の数を上回っており、このような場合タンパク質は塩基性となります(図4)。図3に示されるように、リゾチームの等電点は11を少し上回っています。

A_4

一方イヌのペプシンBのアミノ酸配列をみますと、酸性アミノ酸の数が塩基性アミノ酸の数を大きく上回っています。このような場合タンパク質は酸性となります(図5)。ペプシンの場合偏りが極端で、等電点が1となります。胃という特殊な環境で作用する酵素なので、特殊な構造をもっていると思われます。

A_5

生化学実験では等電点の違いを利用してタンパク質を分離精製するという作業がよく行われます。タンパク質の混合液に電流を流して、酸性タンパク質は+側に、塩基性タンパク質は-側に移動するのを利用するわけですが、実際には自然拡散や振動の影響を回避するため、タンパク質が移動できる程度のゆるいゲルを用います(図6)。

A_6

図6には両性電解質をゲルに溶かしておく場合を示していますが、ゲルを作成するときに予めpHの勾配を作ってあるのを購入して使うというのが簡便で、よく利用されます(1)。タンパク質は通常プラスかマイナスにチャージしているので、精製された分子同士は電荷の反発でくっつきにくいのですが、等電点周辺では分子としてはチャージがなくなるので接近しやすく、場合によっては沈殿が発生します。これは等電沈殿という現象で、等電点電気泳動を行う場合には注意しなければいけません。

等電点電気泳動法で分離した後、分子量の差を利用してさらに分離すると、少量とは言え、かなり純度の高いタンパク質が得られる場合が多いです(2、3)。もっと大量のタンパク質を精製する技術は、今でも生化学者の腕のみせどころで、非常に多くの方法が考案されています(4、5)。

タンパク質にはもうひとつ特徴的な性質があります。それはある条件で相転移を行うことで、典型的な例は熱変性です。図7のように生卵に熱を加えると、ある時点で不可逆的にゆで卵になります。これはαヘリックスやβシートというタンパク質の基本構造が、熱によって破壊されることが主な原因です。αヘリックスやβシートは弱い水素結合によって形成されているので、温度が上昇すると不安定になり、構造が破壊されてランダムに近い状態になってしまいます。これによって多数の分子がからまりあって集合し、不溶性のかたまりを形成します。ただしペプチド結合は破壊されないので、バラバラになることはありません(図7)。みずからバラバラにはなりませんが、タンパク質分解酵素で切断されやすい部分が露出して、分解されやすい状態にはなりやすいと思われます。

A_7

タンパク質には完成後に化学的修飾を受けて機能を発揮する分子も少なくありません。非常に色々な修飾が報告されていますが、ここでもいくつか紹介します。まずリン酸化について見てみますと、セリン・スレオニン・チロシンのOHがリン酸化されてOPO3-となります(図8)。リン酸化されているかいないかということが、あるシリーズの生体化学反応の起動スイッチになっている場合が多く、タンパク質のリン酸化は情報伝達のキーとなるイベントになっています。この分野のパイオニアはジョージ・バーネットとユージン・ケネディでしょう(6)。最近話題の抗がん剤オプジーボのターゲットであるPD-1もリン酸化されることによってスイッチを起動するタンパク質のひとつです(7、関連参考文献8)。

A_8

タンパク質のアセチル化も重要な化学修飾です。ヒストンの低アセチル化は転写が抑制されたヘテロクロマチン状態のマーカーとされています(9)。また癌抑制因子として最も有名なp53はアセチル化によって活性化あるいは安定化することも知られています(10-12)。すでに述べたシステインのSS結合や、糖の付加なども非常に重要な化学修飾であり(図9)、その他にも多数の化学修飾が知られています(13)。

A_9

参照:

1)http://www.gelifesciences.co.jp/technologies/2d-electro/guide-3.html

2)http://www.gelifesciences.co.jp/technologies/2d-electro/guide.html

3)https://www.sbj.or.jp/wp-content/uploads/file/sbj/9003/9003_yomoyama_2.pdf

4)http://www.jaist.ac.jp/~yokoyama/pdf/02_1analysis1.pdf

5)http://www.gelifesciences.co.jp/newsletter/biodirect_mail/technical_tips/

6)G. Burnett and E.P. Kennedy, The enzymatic phosphorylation of proteins, J. Biol. Chem. vol. 211, pp. 969–980 (1954) こちら

7)http://www.ft-patho.net/index.php?Programmed%20cell%20death%201

8)Joseph Schlessinger, Receptor Tyrosine Kinases: Legacy of the First Two Decades.  Cold Spring Harb Perspect Biol. vol. 6,  pp.1-13 (2014) doi: 10.1101/cshperspect.a008912.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3949355/pdf/cshperspect-RTK-a008912.pdf

9)https://www.cstj.co.jp/reference/pathway/Protein_Acetylation.php

10)http://www.cyclex.co.jp/resource/keyword/jkeyword_2.html

11)田中知明、転写因子p53の翻訳後修飾と転写活性化機構. 生化学第82巻第3号,pp. 200-209 (2010)

12) Nature ダイジェスト : http://www.natureasia.com/ja-jp/nature/highlights/79254

13)https://ja.wikipedia.org/wiki/%E7%BF%BB%E8%A8%B3%E5%BE%8C%E4%BF%AE%E9%A3%BE

|

2017年2月 2日 (木)

生物学茶話@渋めのダージリンはいかが59: タンパク質の基本1

タンパク質は生物の体を構成する要素として最も重要な物質であり、同時に栄養源としても重要です。タンパク質に含まれるアミノ酸の数をnとすると理論上20のn乗の種類のタンパク質があり得ますが、遺伝情報としてDNAに刻まれているのは、哺乳類では2万数千種類くらいです。それらは生物の歴史を反映したものであり、なかには細菌・古細菌・真核生物のすべてにおいて機能しているタンパク質も少なくありません。

これまでの復習もかねてタンパク質の基本構造を示すと、図1のようになります。まずアミノ酸がペプチド結合でつながった1次構造。すなわちつながるアミノ酸の順列が一番基本的な構造になります。次にαヘリックス・βシート・ランダムコイル・その他の規則的な構造などのローカルな共通構造を2次構造とよびます。数学で言う「次元」とは別の概念なので注意しましょう。

A

αヘリックスやβシートなどを空間に3次元的に配置したものを3次構造とよびます。図1のリゾチームの図がそれにあたります。リゾチームは多糖類を分解する酵素です。3次構造で示した同じまたは異なるタンパク質が、特定の配置で集合したような場合、その集合体を4次構造とよびます。

タンパク質の3次元構造は、X線結晶解析によって解明されました(1、2)。この功績によりジョン・ケンドリュー(1917-1997)とマックス・ペルーツ(1914-2002)(図2)は1962年のノーベル化学賞を受賞しました。同じ年にワトソンとクリックもノーベル医学生理学賞を受賞したので、この年のノーベル賞は、タンパク質とDNAの構造解明者が同時に受賞するという、分子生物学の歴史上最大の出来事と言っても良いでしょう。

A_2

ペルーツ自身はナチスが台頭する前にウィーンからイングランドに留学していたのですが、ナチスの侵略後は両親が難民となったため資金を絶たれピンチとなりました。しかしロックフェラー財団の援助で学業・研究を続けられたそうです。第二次世界大戦中は氷山空母を建造する計画に参加していました(3)。

ケンドリューは英国空軍の研究所でレーダーの研究をしていましたが、なぜかタンパク質に関心を持つようになって、生物物理学の分野にやってきた人です。ケンドリューとペルーツは二人ともケンブリッジ大学のキャベンディッシュ研究所に在籍し、サー・ローレンス・ブラッグの高弟でした。ワトソンとクリックがDNAの構造を解明したのも、この研究所での仕事でした。

彼らが研究材料として用いたミオグロビンというタンパク質(図3)は、クジラなど海に棲む哺乳動物の筋肉に豊富なもので、酸素を強く結合して保管しておき、血液中の酸素濃度が低下したときに放出して、長い時間海に潜ったままで活動する彼らの生活をささえています。血液中の酸素リザーバーはヘモグロビンで、ミオグロビンと類似したグロビン分子4つで構成されています(図5)。ですのでミオグロビンはヘモグロビンよりかなりシンプルな構造であり、研究材料として好適だったわけです(4)。もちろんクジラからなので、サンプルが大量に確保できるという利点もありました。

A_3

ただちょっと複雑なのは、ミオグロビンはアミノ酸が連結した鎖だけでできているのではなく、ヘムという非タンパク質の、いわゆる補欠分子族といわれる物質を含んでいます。ヘムはポルフィリン環と中央部の鉄原子からなり、この鉄原子は酸素分圧によって、酸素と結合したり分離したりします(図4)。この反応を利用してミオグロビンは酸素不足時に筋肉に酸素を供給しています。ミオグロビンは8つのαヘリックスをもつ安定な構造のタンパク質で(図3)、ヘムを組み込むことによって適切に酸素を組織に供給する役割を果たしています。

A_4

ヘモグロビンはミオグロビンに類似したαグロビンとβグロビンを2個づつ組み合わせた4量体タンパク質で、前述の4次構造を持っています(図5)。それぞれのグロビンがひとつのヘムを持っているので、1分子のヘモグロビンには4個のヘムが存在します。ヘモグロビンのヘムは、ミオグロビンのヘムにくらべて酸素との親和性が低く、酸素を放出しやすい性質を持っています。ヘモグロビンやミオグロビンは単なるヘムの台座ではなく、必要な酸素を適切に供給できるようなシステムを提供していると言えるでしょう。

A_5

ヘムはミオグロビンやヘモグロビン以外にもいくつかのタンパク質に含まれており、シトクロムcもそのひとつです(図6)。シトクロムcはαヘリックスを4つ持ち、アミノ酸約100個からなる小さなタンパク質ですが、酸素呼吸を行う生物(細菌から哺乳類に至るまで)にとっては必須の生体分子です。

A_6

シトクロムcに含まれるヘムは、ミオグロビンやヘモグロビンのヘムbとは異なり、ヘムcという構造をとっています。ヘムcはタンパク質と硫黄原子を介して共有結合しています(図7)。ヘムについてより詳しい情報は文献(5)を参照して下さい。

A_7

ヘム以外にも補欠分子族にはさまざまなものがあり、図8と図9に主要なものを示しました。タンパク質と頻繁に結合したり分離したりする分子の場合、常時タンパク質に結合している補欠分子族と区別して補酵素とよぶこともあります。補欠分子族や補酵素はタンパク質以外の物質であり、同様な機能をタンパク質が持つ場合、それはサブユニットとよばれるタンパク質の4次構造の一部または独立の制御因子とみなされます。

A_8

A_2

補欠分子族・補酵素はビタミンと関係が深く、FMN・FADはビタミンB2から合成され、メチルコバラミン=ビタミンB12、ピリドキサルリン酸=ビタミンB6、ビオチン=ビタミンB7、チアミン=ビタミンB1、NAD+・NADP+はナイアシンから合成されます。

ミオグロビン・ヘモグロビン・シトクロムcはすべてαヘリックスとランダムコイルに近いペプチド鎖で構成されたタンパク質ですが、たとえばポリンのように、主要な構造がβシートで構成されているタンパク質もあります(図10)。ポリンは細胞膜にβシートが壁に相当するトンネルを埋め込んだような形で存在し、膜を通過する低分子物質の選別を行います。βシートはその通りシート状の構造や、かごのような構造をつくることもできます。

A_10

αヘリックスやβシートとは異なる、あるいはバリエーション的な規則構造をもつタンパク質も存在します。絹フィブロインは昆虫の繭の成分ですが、 Gly-Ser-Gly-Ala-Gly-Ala というアミノ酸配列の繰り返しを多数持っていて、図11のようにこの構造の逆順鎖と隣接することによって、まるでファスナーのように側鎖がかみ合って、繊維状の構造を形成しています。この側鎖が大小大小と交互に並ぶ特殊なファスナー様構造によって、絹は非常にちぎれにくい丈夫な繊維になることができます。

A_11

さまざまなタンパク質のアミノ酸配列およびその他の情報はデータベースに集積されており、誰でも閲覧することができます。たとえば pir=protein information resource (6)にアクセスして、上部のバーから search/analysis を選択してクリック、次の画面から text search を選択してクリック、そうすると選択と入力の窓がでてきますので、選択の方は protein name を選択、入力の方は globin と入力し、search をクリックします。検索結果画面の最初に Protein name and ID という欄がありますので、その HBA MOUSE をクリックすると、マウスのαグロビンに関する様々な情報が得られます。スクロールしていくと真ん中あたりにアミノ酸配列が記載してあります(図12)。

A_12

またはゲノムネットにアクセスし(http://www.genome.jp/ja/)、DBget search を開いて swiss prot というデータベースを探してクリックします。でてきた入力の窓に mouse globin と入力し、リストの中から HBA MOUSE を選択すると同様なデータが得られます。Swiss prot では、最後(ローエンドまでスクロールする)にアミノ酸配列の情報が記載されています。

このようなデーターベースの情報を用いて、すべての動物が持っているタンパク質であるシトクロムcのアミノ酸配列を、さまざまな動物について打ち出してみると、興味深いことがわかります(図13)。

A_13

左から3番目のアミノ酸をみてみますと、20種類の動物のうち16種類ではすべてバリンですが、七面鳥・鶏・鳩・王様ペンギンの4種類ではイソロイシンになっています。哺乳類はこのアミノ酸を魚類・両生類・爬虫類から引き継いでいますが、鳥類はある時点でバリンをイソロイシンに転換したということになります。これはたまたまなのか、何らかの意義があるのかよくわかりませんが、アミノ酸配列から進化系統について論ずることが可能であることが示唆されています。

もうひとつ興味深いのは4番目と46番目です。いずれもサル目のなかでクモザルだけが他と異なるアミノ酸になっています。ただし4番目の場合、爬虫類・鳥類・哺乳類のすべてがグルタミン酸(E)であるのにクモザルだけフェニルアラニン(F)となっています。対照的に46番目では爬虫類・鳥類・哺乳類のすべてがフェニルアラニン(F)なのに、クモザル以外のサル目の動物だけがチロシンとなっています。これだけのデータでも、サル目のなかでクモザルだけが独立したグループであることが示唆されます。一方で11~12番目をみると、クモザルを含めたサル目が、サル目以外の哺乳類・鳥類・爬虫類・魚類とは異なる共通配列を持っていることがわかります。

たった1種のタンパク質のアミノ酸配列を比較しただけでも、様々な生物の歴史や系統関係を調べる糸口になります。実際シトクロムcのアミノ酸配列を比較するだけで系統樹を記述することができたという論文もあります(7)。

参照:

1)John Kendrew et al., A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis., Nature vol. 181, pp.

662 - 666 (1958); doi:10.1038/181662a0

2)Max Perutz et al., Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray

Analysis., Nature vol. 185, pp. 416 - 422 (1960); doi:10.1038/185416a0

3)Reviewed by Richard E. Dickerson, "Max Perutz and the secret of life" by Georgina Ferry,
Protein Sci. vol. 17, pp. 377–379 (2008) doi:  10.1110/ps.073363908
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222719/

4)Myoglobin: A brief history of structural biology. Video presentation.
http://www.richannel.org/myoglobin-a-brief-history-of-structural-biology

5)Shigekazu Takahashi, and Tatsuru Masuda, Analysis of Heme in Photosynthetic Organisms. 低温科学 vol.67, pp. 327-337

(2009)
http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/39163/1/67-048.pdf

6)http://pir.georgetown.edu/

7)Robert M. Schwartz and Margaret O. Dayhoff, Origins of prokaryotes eukaryotes mitochondria and chloroplasts. Science,
Vol. 199, Issue 4327, pp. 395-403 (1978)

|

2017年1月24日 (火)

生物学茶話@渋めのダージリンはいかが58: オリゴペプチド・ポリペプチド

タンパク質の話題に入る前に、構成要素であるアミノ酸の数が少ないだけの、いわば弟分にあたるオリゴペプチド・ポリペプチドについてみておきましょう。オリゴペプチドは数個、ポリペプチドは数十個までのアミノ酸で構成されています。

1928年アレクサンダー・フレミング(1881-1955)は、研究のために培養していたブドウ球菌の培養皿に青カビ(ペニシリウム)が生えていることに気がつきました。初歩的な失敗でしたが、よくみると青カビの周辺ではブドウ球菌が生育していないことに気がつきました。

フレミングはこの青カビの毒素を抽出・精製することに成功しませんでしたが、ハワード・フローリー(1898-1968)とエルンスト・チェイン(1906-1979)は1940年に、このブドウ球菌の生育を阻止する物質を精製し、いくつかの成分があることをつきとめました。それらを総称してペニシリンと言います。

これらは20世紀最大の医薬品であり、開発の功績によって3人は1945年にノーベル医学生理学賞を受賞しました(図1)。現在でもよく使われるセフェム系の抗生物質はペニシリンと構造が類似した、同じグループの医薬品です。

A

ペニシリンのひとつであるペニシリンNの合成過程と構造式を図2に示します。アミノアジピン酸+システイン+バリンのトリペプチドであることがわかります。ただしアミノアジピン酸が遺伝暗号表にはないアミノ酸であること、青点線で示したような環状構造(β-ラクタム4員環+5員環)をつくること、バリンがもとはL型なのに、ペプチドに取り込まれたときにはD型になっていることなどの特異な性質を持っています。

ペニシリンはもともとペニシリウムが生存競争のために産生する毒素(アロモン)なので、生物が簡単には分解解毒できないように特殊な構造を持っていると考えられます。

A_2

ペニシリンはペプチドですが、リボソームで作られるのではなく、細菌が持つ酵素によって合成されます。遺伝暗号表に書き込まれていないものは、リボソームでは合成できません。ペニシリンは細菌の細胞壁の合成を阻害する作用を持っていますが、真核生物にとっては基本的に毒物としての作用はありません。

ただもともと真核生物の体内に類似物質があるわけではなく、しかも特異な分子形態なので、強いアレルギー反応がおきやすいことがわかっています。私の父もペニシリンショックで命を落としました。当時は現在のような十分な配慮なく投与されていたと思われます。交通事故や医療事故で突然人生が終了するというのは誠に理不尽なことです。

米国NIHはペニシリンの効果と人体への安全性を確認するため、1946年から1948年にかけてグアテマラで人体実験を行ったことが、最近になって発覚しました。オバマ大統領は2010年にグアテマラに謝罪しました(2)。

A_3真核生物にもペプチド性の毒素を持つものは多く、例えばテングタケのα-アマニチンは8つのアミノ酸からなるオリゴペプチドです。α-アマニチンはRNAポリメラーゼIIに結合し、タンパク質の合成に必要なmRNAの合成反応を阻害します。蛇毒やヒキガエルの毒もペプチド性のものです。

α-アマニチンの構造を図3に示しました。まるで駐車禁止のマークのような奇妙な分子デザインです。

最初にいくつか毒ペプチドについて述べたわけですが、もちろんオリゴペプチドにも有用な生理作用を持つものは数多く存在します。まずグルタチオンについてみてみましょう。図3のようにグルタチオンはグルタミン酸+システイン+グリシンからなるトリペプチドです。青丸のHによって過酸化物や活性酸素を還元無毒化する機能があります。

A_4

生物は酸素を利用するようになってから、酸素の毒性=あらゆるものを酸化しようとする(サビさせようとする)性質、からいかにして逃れるかが大きな課題だったわけですが、そのひとつの解決策がグルタチオンでした。

生体内に還元型のグルタチオンをためておいて、活性酸素が発生するとすばやく還元し、結果生成した酸化型のグルタチオンは、ただちにグルタチオンリダクターゼとNADPHの作用によってまた還元型にもどすというサイクルによって、体の「サビ」を防ぐことができます(図4)。

ただしグルタチオンは多量にあればあるほどよいわけではなく、代謝のバランスを保つことも必要ですし、タンパク質が持つSS結合を切断する作用もあるため、濃度は適切に調節される必要があります。

図4のグルタチオンの構造をよく見ると、一番左側にアミノ基とカルボキシル基があります。通常のペプチドだと左端はアミノ基、右端はカルボキシル基なので、これは普通ではありません。すなわちグルタミン酸の側鎖(γ位)のカルボキシル基を使って、隣のシステインとペプチド結合を形成しています。したがってL-γ-glutamyl-L-cysteinyl-glycineという名前が正式名になります。

ペプチド結合を切断する酵素は数多くありますが、ほとんどは側鎖を使った結合を切断することができないので、グルタチオンは切断されにくくなっています。ペニシリンと同様、グルタチオンもリボソームではなく専用の酵素によって合成されます。

オキシトシンはペニシリンやグルタチオンより多い、Gly-Leu-Pro-Cys-Asn-Gln-Ile-Tyr-Cys の9個のアミノ酸で構成されています。図5に構造式を示します。末端のシステインが中間部のシステインとSS結合を形成して環状構造になっています(3)。通常のペプチド鎖と異なり、カルボキシル末端が存在しません。

A_5

オキシトシンの9個のアミノ酸の配列は遺伝子に刻まれており、ペニシリンやグルタチオンと違ってリボソームによってまず前駆体が合成され、複雑な加工の過程を経て図5のような構造の分子がつくられます。生体内では脳の視床下部でつくられ、脳下垂体からホルモンとして血流に放出されます。オキシトシンの作用によって、分娩時に子宮筋の収縮が促され、また出産後には乳腺の筋肉を収縮させ乳汁分泌が促進されます。

女性だけではなく男性でも分泌され、仲間内での親密さを増す作用があることが知られています(4)。一方で仲間でない者には反発心が強まるという副作用もあると言われています。右翼的心情のベースになる物質かもしれません。

ペプチドホルモンとしてはじめてオキシトシン・バソプレッシンを同定し構造解析と合成を行った功績で、ヴィンセント・デュ・ヴィニョーが1955年にノーベル化学賞を受賞しています(5)。脳がホルモンを合成するということで、当時は非常な驚きを持ってむかえられた研究でした(5)。タレントでもある脳科学者中野信子がオキシトシンの作用を研究していることでも知られています(6)。この他にもペプチド性のホルモンは多数知られています(下記)。ペプチドホルモンの作用機構などについては、いずれ稿をあらためて述べるつもりです。

天然のオリゴペプチド・ポリペプチドの代表的なものを並べてみますと、次のようになります。

1.ペプチドホルモン:インスリン、グルカゴン、オキシトシン、バソプレッシン、アンジオテンシン、成長ホルモン、ガストリン、セクレチン、TRH、GnRH

2.抗生物質:ペニシリン、グラミシジンS

3.真核生物の抗菌性ペプチド(7,8):マガイニン、タチプレシン、ディフェンシン

4.酵素阻害ペプチド:ロイペプチン, ペプスタチン,植物トリプシンインヒビター

5.神経伝達物質:エンケファリン、エンドルフィン、ダイノルフィン

6.毒ペプチド:アマニチン,コブラトキシン

7.細胞内還元剤:グルタチオン

TRH(甲状腺刺激ホルモン放出ホルモン)やGnRH(性腺刺激ホルモン放出ホルモン 図6)はいずれも視床下部で放出されて、脳下垂体の機能を調節するホルモンですが、これらの構造決定についてはロジェ・ギヤマンとアンドリュー・シャリーの歴史的死闘とも言える競争があったことは業界では有名なお話でした。興味のある方はサイト(9)または書籍(10)を参照して下さい。なお二人とも1977年のノーベル医学・生理学賞を受賞しました。

A_6

人工甘味料のアスパルテームも N-L-α-aspartyl-L-phenylalanine 1-methyl ester というオリゴペプチドです(図7)。これは天然には存在しないものですが、無害の食品添加物として広く用いられています。

A_7

参照:

1)Howard Markel, The real story behind penicillin.PBS newshour.(2013)
http://www.pbs.org/newshour/rundown/the-real-story-behind-the-worlds-first-antibiotic/

2)https://ja.wikipedia.org/wiki/%E3%82%B0%E3%82%A2%E3%83%86%E3%83%9E%E3%83%A9%E4%BA%BA%E4%BD%93%E5%AE%9F%E9%A8%93

3)https://en.wikipedia.org/wiki/Oxytocin

4)上田 陽一、“オキシトシン”の多彩な生理作用 公益財団法人山口内分泌疾患研究振興財団 内分泌に関する最新情報 pp. 1-7 (2015)
こちら

5)Vincent du Vigneaud et al., The synthesis of an octapeptide amide with the hormonal activity of oxytocin. . Am. Chem. Soc., 

vol.75, pp 4879–4880 (1953)

6)http://morph.way-nifty.com/grey/2015/01/post-b78b.html

7)小林聖枝、抗菌性ペプチドMagainin 2 とTachyplesin Iの細菌選択的相乗効果 カクテル療法への可能性、YAKUGAKU

ZASSHI vol.122, pp. 967-973 (2002)

8)富田哲治・長瀬隆英、生体防御機構としてのディフェンシン、日老医誌, vol.38, pp. 440-443 (2001)

9)http://www.org-chem.org/yuuki/aminoacid/hormone.html

10)Nicholas Wade著 丸山工作・林 泉 訳、 ノーベル賞の決闘、岩波書店 (1984)  ISBN 978-4002601243

|

2017年1月19日 (木)

生物学茶話@渋めのダージリンはいかが57: ペプチド結合・αヘリックス・βシート

Ahermann_emil_fischer2タンパク質はアミノ酸が脱水縮合して合成される物質です。このことを発見したのはエミール・フィッシャー(1852-1919、図1)です。エミール・フィッシャーはむしろ糖やプリン誘導体の研究者として有名で、それらにかんする研究業績を評価されて、1902年にファント・ホッフに続いて2人目のノーベル化学賞を受賞しています。

彼は有機化学・生化学の父とでも言うべき人で、糖やプリン誘導体以外にも多方面に業績があり、1901年にはエルネスト・フォルノー(1872-1949)と共に、グリシンとグリシンを脱水縮合させてグリシルグリシンを合成しています(1)。これがタンパク質化学のはじまりでしょう。

彼はその後18個のアミノ酸をつないで、ポリペプチドと言えるような高分子を合成することに成功しました。その性質は天然のタンパク質とよく似ていたそうです(2)。100年以上前の文献で私は読んでいませんが、現在でも7000円くらい支払えば読むことができます。

フィッシャーはタンパク質合成に成功したとき、これで近未来に人類の食糧問題は解決するだろうと考えましたが、残念ながら現代に至っても食糧問題は人類にとって深刻な課題のまま残されています。

フィッシャーは膨大な業績を残しましたが私生活には恵まれず、奥方は結婚後7年で病死、息子3人のうちひとりは戦死、ひとりは自殺で失っています。彼自身も1919年に自殺しました(3)。リヒテンターラーが彼の生涯や業績についてレビューを出版しています(4)。自殺の原因は不明ですが、彼自身が開発して糖の構造解析に用いていたフェニルヒドラジンによって、癌になったことが原因だという説があります。

アミノ酸の脱水縮合は図2のように、カルボキシル基COOHのOHとアミノ基NH2のHがH2Oとなって離脱し、残されたCOとNHがO=C-N-Hという形で結合し(ペプチド結合)、2つのアミノ酸を連結する形で行われます。したがって反応生成物はH2N-HCR-ペプチド結合-HCR-COOH(Rはそれぞれのアミノ酸によって異なる)という形になります。図3のように4つのアミノ酸が連結されるとH2N-HCR-ペプチド結合-HCR-ペプチド結合-HCR-ペプチド結合-HCR-COOHとなります。

A

図3では具体的にバリン-グリシン-セリン-アラニンのテトラペプチドの構造を記してあります。連結されたアミノ酸の数が数十個以内の場合、タンパク質ではなくポリペプチドと呼ばれる場合が多いです。またより小数の場合オリゴペプチドとも呼ばれます。図3の青い丸印のついたCはアミノ酸が連結されたあとでも不斉炭素です。ポリペプチド(タンパク質)の両端はそれぞれアミノ基とカルボキシル基が露出していて、それぞれN末・C末(N端・C端)などと呼ばれることがあります。

A_2

A_3タンパク質構造研究の次のエポックは、ライナス・ポーリング(1901–1994、図4)によって創られました。彼は貧困家庭の生まれで、ハイスクールを卒業できなかったそうですが、苦学してオレゴン農業大学を卒業しました。そして第二次世界大戦中に、マンハッタン計画の化学部門のヘッドにハントされるほどの量子化学部門での重鎮となりました(そのポストに就くのは断ったそうです)(5)。

ポーリングは化学結合に関する研究で1954年にノーベル賞を受賞していますが、タンパク質の構造については50才も近づいた頃から研究をはじめて、たちまちαヘリックス(6)やβシート(7)という概念を提唱するなど卓越した業績を残しました。これらの論文および現代的観点から見た解説は無料で読むことができます(8)。

ポーリングらがこれらの重要な発表を行った当時、米国ではマッカーシ-イズム(レッドパージ)が吹き荒れており、マンハッタン計画参加を断ったポーリングは反政府勢力とみなされてパージされそうになっていたのですが、これらの業績によって地位を保つことができたようです(8)。ポーリングはその後も反核運動を続けて、1962年にはノーベル平和賞を受賞しています。ノーベル賞を2回受賞した人は、マリ・キュリー(1903年に物理学賞、1911年に化学賞) 、ジョン・バーディーン(1956年と1972年に物理学賞) 、フレデリック・サンガー(1958年と1980年に化学賞) 、ライナス・ポーリング(1954年に化学賞、1962年に平和賞)の4人です。

A_4ポーリングはタンパク質の構造形成において水素結合が重要な役割を果たしていることを示しました。水素の原子核は小さく弱体で、保有する電子を強い(陽子の多い)原子核を持つ原子に奪われがちです。

水の分子における水素も原子を酸素に奪われがちで、その結果水素原子はプラスのチャージを持つようになります(図5左)。

一方酸素原子は過剰な電子でマイナスチャージを帯びるので、水分子は片側が+、反対側が-のチャージを帯び、水分子同士が引き合って安定した構造を保ち、その結果比熱が高くなって、熱を加えてもなかなか気体になりません(図5左)。

酸素分子以外でも水素は電子を奪われて+にチャージしがちなので、他の原子を引き寄せることができます。結果的に水素をはさんで他の2原子がブリッジをつくるような形になります(図5右)。これが水素結合です。

DNAの塩基対ATおよびGCは水素結合によって形成され、DNAを適度に安定化しています。水素結合は分子同士ばかりでなく、分子の内部でも形成されます。タンパク質の場合はそれによってαヘリックス(図6)やβシート(図7)が形成され、分子が安定化します。αヘリックスは1本のペプチド鎖によって形成されますが、βシートは2本のペプチド鎖によって形成されます。図7のように分子内で鎖が折れ曲がって行ったり来たりすることによって、同じ分子内でβシートを形成することが可能になります。

A_5

A_6

水素結合のエネルギーは5~30KJ/モルであり、数百KJ/モルの共有結合と比べると非常に小さいので弱い結合と言えますが、DNAには分子が持つ塩基対の2~3倍の数の水素結合があるわけですし、タンパク質分子内にあるαヘリックスやβシートそれぞれにおいても非常に多数の水素結合があるので(図6、図7)、分子の安定性には相当寄与しています。

またDNAを読み取るには水素結合を引きはがして単鎖にしなくてはいけないわけですし、タンパク質が他の因子によって機能を制御されたり、自身が酵素の機能を発揮するような場合には分子の形を変えなくてはいけないので、水素結合が弱い結合であることにはそれなりに意義があるわけです(9)。

ポーリングは晩年癌のビタミンC大量投与療法の研究などでバッシングを受けて、研究ができないような状況に追いやられましたが、死後彼の研究を支持する結果も報告されて、名誉は回復されました(10)。

彼自身マキシマムヘルスを実現するため、マルチビタミンの摂取を実行し、現在でも「ライナス・ポーリン博士のスーパーマルチビタミン」「ライナス・ポーリン博士のビタミンC」などという商品が販売されています。

参照:

1)Emil Fischer and Ernest Fourneau, Berichte der deutschen chemischen Gesellschaft, vol.34, p.2868 (1901)

2)Emil Fischer, Synthese von Polypeptiden, Berichte der deutschen chemischen Gesellschaft, vol.36,pp.2982-2992 (1903) doi:10.1002/cber.19030360356.
http://onlinelibrary.wiley.com/doi/10.1002/cber.19030360356/abstract

3)Top 5 suicide chemists. 1) Emil Fischer (1852-1919)
http://syntheticenvironment.blogspot.jp/2007/04/top-5-suicide-chemists.html

4)Emil Fischer, His Personality, His Achievements, and His Scientific Progeny, Frieder W. Lichtenthaler, European Journal of Organic Chemistry
Volume 2002, Issue 24,  pages 4095-4122 (2002)
http://onlinelibrary.wiley.com/wol1/doi/10.1002/1099-0690(200212)2002:24%3C4095::AID-EJOC4095%3E3.0.CO;2-2/full

5)https://ja.wikipedia.org/wiki/%E3%83%A9%E3%82%A4%E3%83%8A%E3%82%B9%E3%83%BB%E3%83%9D%E3%83%BC%E3%83%AA%E3%83%B3%E3%82%B0#.E7.94.9F.E4.BD.93.E5.88.86.E5.AD.90.E3.81.AE.E7.A0.94.E7.A9.B6

6)Linus Pauling, Robert B. Corey, and H. R. Branson、The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA vol.37, pp.205-211 (1951)
http://www.pnas.org/content/37/4/205.full.pdf?sid=d8637919-9b62-43f1-b1f3-7e675806b4a5

7)Linus Pauling, and Robert B. Corey、The pleated sheet, A new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. USA vol.37, pp.251-256 (1951)
http://www.pnas.org/content/37/5/251.full.pdf?sid=585970d7-d233-401b-84a1-c5a4668381d9

8)David Eisenberg、The discovery of the α-helix and β-sheet, the principalstructural features of proteins. Proc. Natl. Acad. Sci. USA vol.100, pp.11207–11210 (2003)
http://www.pnas.org/content/100/20/11207.full

9)J. D. Watson et al., Molecular Biology of the Gene 6th edn, Chapter 5, Cold Spring Harbor Laboratory Press (2008)

10)Padayatty S, Riordan H, Hewitt S, Katz A, Hoffer L, Levine M (2006). “Intravenously administered vitamin C as cancer therapy: three cases”. CMAJ vol.174 (7), pp.937-942. PMID 16567755.

|

2017年1月13日 (金)

生物学茶話@渋めのダージリンはいかが56: アミノ酸

しばらく核酸のお話がつづきました。かなりつっこみましたので、このあたりで少しタンパク質の話題にワープしようと思います。核酸とタンパク質は生命現象の両輪であり、バランス良く理解を進めることが必要です。

タンパク質は約20種のアミノ酸からなる生体高分子ですが、まずその構成要素であるアミノ酸のお話から始めましょう。最初にアミノ酸を発見したのはフランスの薬剤師・化学者ルイ=ニコラ・ヴォークラン(1763 - 1829)と彼の助手だったピエール=ジャン・ロビケ(1780 – 1840、図1)です。彼らは1806年にアスパラガスから高純度のアミノ酸を抽出し、その性質を研究してアスパラギンと命名しました(1,2)。またアンリ・ブラコノー(1780 - 1855、図1)は1820年にゼラチンの分解物からグリシンを発見しました(3)。

結局ほぼすべてのアミノ酸が発見されるまでには100年の歳月を要しました。日本のアミノ酸研究者としては池田菊苗(1864 - 1936)が有名です。彼はグルタミン酸の発見者ではありませんが、このアミノ酸のナトリウム塩が「だし」のうまみ成分であることを発見しました(4)。

A

A_2最初にタンパク質の一次構造、すなわちアミノ酸が並ぶ順番を解明したのはフレデリック・サンガー(1918 - 2013、図2)でした。これによって、アミノ酸のみがつながってタンパク質を構成していることもわかりました。

後になって、すでにふれたsnRNAや補酵素・補欠分子族などを分子に含むものも見いだされましたが、基本的にタンパク質はアミノ酸がつながってできています。

サンガーはこの業績によって1958年のノーベル化学賞を受賞しましたが、後にDNAの塩基配列を決定する方法も開発して、1980年に2度目のノーベル化学賞を受賞しています(5、6)。

サンガーが解明したのはインスリン分子におけるアミノ酸の配列ですが、その前にアミノ酸の略号による表記を図3に示しておきます。3文字を用いる場合と1文字を用いる場合があります。

A_3

図3の1文字による表記を使ってインスリン分子の構造を示したのが図4です。サンガーが使用したインスリンのサンプルは牛の膵臓から抽出して、何度も結晶化することによって精製されたものです。アミノ酸の配列は動物種によって多少異なります。ですからヒトなどほかの生物のインシュリンのアミノ酸配列が教科書などに出ている場合、この配列とは異なる可能性があります。

インスリン分子は単にアミノ酸がタンデム(直列)につながったものではなく、A鎖(21アミノ酸)・B鎖(30アミノ酸)の2列のアミノ酸が、システインのところでS-S結合(ジスルフィド結合)を形成し、接続された構造になっています(図4)。

A_4

タンパク質の構造については後に述べることとして、まずタンパク質の構成要素であるアミノ酸についてみていきましょう。生物に含まれるアミノ酸はいろいろバリエーションはありますが、基本的には図3に示した20種類です。すべてのアミノ酸分子は炭素原子を中心として、これにカルボキシル基(COOH)、アミノ基(NH2)、水素(H)、側鎖が結合しています(図5)。この4つの要素がすべて異なる場合、図6のように鏡像の構造体=エナンティオマー(対掌体)が存在し得ます。4つの要素の中心になる炭素を不斉炭素(アシンメトリックカーボン)と呼びます。

A_5

A_6

対掌体は光線を当てたときの回折方向が異なるので、以前は光学異性体と呼ばれていました。対掌体のふたつの化合物はそれぞれD体、L体と呼ばれます。アミノ酸の場合、生物はほぼL体のみを用いてタンパク質を合成します。ただ希にD体を使用する場合もあるので、DL変換を行なうアミノ酸ラセマーゼという酵素も存在します(7、8)。

アミノ酸のうちグリシンはRの部分が水素(H)なので、図7のように鏡像を構成する物質は120度回転すると同じになってしまいます。したがって対掌体は存在しません。またプロリンは通常のアミノ酸と構造が異なりますが、対掌体(光学異性体)は存在します(9)。

A_7

アミノ酸は側鎖Rの構造によって、異なる性質をもつグループに分類できます。図8に示したのは中性で疎水性のグループです。球形のタンパク質をつくる場合、外側の水と接する部分を親水性のアミノ酸、内側を疎水性のアミノ酸にすれば、うまく球状の分子構造を形成することができます。また細胞膜の外側と内側に親水性、細胞膜内部に疎水性のアミノ酸を配置すれば、細胞膜を貫通するタンパク質のデザインとして好適となります。疎水性のアミノ酸をさらに細かく分類すると、芳香族のトリプトファンとフェニルアラニン、それ以外の脂肪族のグループに分けられます。

A_8

次に中性で親水性のグループを図9に示します。1級アミド(CONH2)や水酸基など水と親和性が高い分子パーツを持っています。極性分子グループと分類されることもあります。

極性とは分子の片側に電子が偏って存在することを意味します。水も極性分子で、電子は酸素側に偏っています。したがって水に極性分子を混ぜると、電子が豊富な部位と、足りない部位が引き合ってうまく混合し、溶解度は高くなります。酵素は通常水に溶解した状態で作用するので、特に表層は親水性のグループで被われている必要があります。

A_9

図10には塩基性、図11には酸性のアミノ酸を示します。塩基性のアミノ酸は特に核酸との相互作用を行なう上で重要です。酸性のアミノ酸はその反応性の高さを利用するため、酵素の活性中心に位置する場合があります。

図11に示したプロリンは特異なアミノ酸で、アミノ基がありません。その代わり5員環のNHがアミノ基の役割をしていて、他のアミノ酸のカルボキシル基と反応して結合することができます。これによってアミノ酸鎖の角度を変えることができるので、球形分子などを形成するときには重要な役割を果たします。タウリンはカルボキシル基を持たず、代わりにスルホン基(-SO3H)を持っていますが、タンパク質には含まれず単独分子で機能します。

A_10

A_11

植物のような独立栄養生物はすべてのアミノ酸を自前で合成できますが、従属栄養生物はアミノ酸をエサとして取り込む必要があります。ヒトの場合一般に、図12に示される9種類のアミノ酸を外界から摂取する必要があります(10、11)。

ヒスチジンは体内で作られますが、急速な発育をする幼児の食事に欠かせないことから、1985年からこれも必要なアミノ酸として加わるようになりました(12)。なお、アルギニンは体内でも合成され、成人では非必須アミノ酸ではありますが、成長の早い乳幼児期では体内での合成量が十分でなく不足しやすいため、準必須アミノ酸とされています。

A_12

一般に肉食動物は自分とほぼ同じアミノ酸バランスの食事なので栄養的には優れていますが、それを続けていると次第にアミノ酸合成を行なう酵素に進化的欠陥が発生し、必須アミノ酸が増える可能性が高くなります。図13で猫とヒトを比較していますが、アルギニン・チロシン・システインなどについては、ヒトと比べて猫は要求性が高くなっているようです。

また猫はタウリンを合成できません。タウリンは、心臓の筋肉や目の細胞に多く含まれ、タウリンの欠乏は 網膜の異常(失明につながることもあり) 拡張型心筋症(発病すると死に至る…)や子猫の発育異常、免疫不全などの原因になります(13、14)。

A_13

とはいえ草食動物でも羊がシステインを合成できないなどということもあり、腸内細菌にアミノ酸合成を行わせる(草食動物の腸は長い)場合もあって、必須アミノ酸のお話もそう単純ではありません。アブラムシはその細胞内にブフネラという細菌を飼っていて、必須アミノ酸をつくらせているというような極端な場合もあります(16)。シロアリはなんと窒素固定細菌を腸内に飼っていて、空気中の窒素からアミノ酸をつくらせているそうです(17)。

参照

1)http://www.a-creation.jp/basic/history/

2)http://andantelife.co.jp/aminoacids/aminoacids.htm

3)https://glycine-corp.com/2016/08/11/what-is-glycine/

4)大越 慎一:うま味の発見と池田菊苗教授、東京大学理学部広報
http://www.s.u-tokyo.ac.jp/ja/story/newsletter/treasure/02.html

5)https://ja.wikipedia.org/wiki/%E3%83%95%E3%83%AC%E3%83%87%E3%83%AA%E3%83%83%E3%82%AF%E3%83%BB%E3%82%B5%E3%83%B3%E3%82%AC%E3%83%BC

6)Antony O. W. Stretton、The First Sequence: Fred Sanger and Insulin、Genetics vol.162, pp.527–532 ( 2002)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462286/pdf/12399368.pdf
http://www.genetics.org/content/162/2/527

7)山根隆 D-アミノ酸の効率的合成に関係する酵素の構造と機能  Japanest NIPPON (2011)
http://japanest-nippon.com/jp/mbinfo/mb_detail1.php?cid=1&id=12

8)https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%9F%E3%83%8E%E9%85%B8%E3%83%A9%E3%82%BB%E3%83%9E%E3%83%BC%E3%82%BC

9)http://www.tennoji-h.oku.ed.jp/tennoji/oka/OCDB/Protein/proline.htm

10)https://ja.wikipedia.org/wiki/%E5%BF%85%E9%A0%88%E3%82%A2%E3%83%9F%E3%83%8E%E9%85%B8

11)馬渕知子 タンパク質を構成する9種類の「必須アミノ酸」とは? 
http://www.skincare-univ.com/article/011704/

12)山口迪夫 食事:ヒスチジンが必須アミノ酸と考えられる理由
http://www.nutritio.net/question/FMPro?-db=question-bbs.fp5&-lay=main&-Format=detail.htm&hatugenID=97&-Find

13)岩田麻美子 猫の栄養学講座 タンパク質
https://allabout.co.jp/gm/gc/69259/all/

14)http://lifecuration.link/post-2725-2725

15)http://www.weblio.jp/wkpja/content/%E3%82%B7%E3%82%B9%E3%83%86%E3%82%A4%E3%83%B3_%E7%BE%8A

16)理化学研究所 プレスリリース(2009)
http://www.riken.jp/pr/press/2009/20090310_2/

17)理化学研究所 プレスリリース(2015)
http://www.riken.jp/pr/press/2015/20150512_2/

|

2017年1月 5日 (木)

生物学茶話@渋めのダージリンはいかが55: mRNAへの道2

前稿「54」で述べたように、シャープやレダーらによって真核生物の遺伝子がイントロンによって分断されていることが明らかになり、これは真核生物の特徴であるとしばらく考えられていましたが、しばらくするとイントロンは細菌や古細菌にも存在することがわかりました(1)。このうち古細菌のイントロンはわが国の研究者達が発見したものです(2)。

図1に各種イントロンのリストをまとめて記しておきます。真核生物においてもミトコンドリアや葉緑体の遺伝子には細菌型のイントロンが存在します。またrRNAには細菌型の、tRNAには古細菌型のイントロンが存在します。細菌型のイントロンはイントロン自身が酵素の機能を持っていたり、イントロンの内部に酵素の遺伝子を持っていたりして、自力でスプライシングを行うことができます。

1a

細菌のイントロンには様々なものがありますが、いずれも構造は複雑です。本来は蛋白質である酵素の役割をRNAが代替しようというわけですから、それは当然と言えます。ここではウィキペディアからグループIIイントロンの構造を拝借して、図2として示しておきます。

2a

古細菌型のイントロンはリボヌクレアーゼとRNAリガーゼによってスプライシングが行われます。真核生物でもtRNAのイントロンでは古細菌型のスプライシングが行われますが、オルガネラやリボソーム遺伝子以外の大部分の遺伝子はスプライソソームというメカニズムでスプライシングが行われます。

イントロンというのはDNAの病気であり、スプライシングとはそのひとつの治療法です。DNAレベルでは治療不可能なので、転写されたときにRNAレベルで治療を行うわけです。参照文献(1)によると、クラミドモナスという藻類ではミトコンドリアのある酵素が1~2億年の間に核に移転したことがわかっていますが、その間に真核生物型のイントロンが、この酵素の遺伝子に15個も挿入されていたそうです。1000万年に1遺伝子あたり1個のイントロンが挿入されるという計算ですね。ヒトの遺伝子は約2万あるので、1000万を2万でわると500ですから、約500年にひとつイントロンが増加する計算になります。

えらい迷惑な話ですが、イントロンも長い間「ホスト」のDNAに棲み着いていると、その内部にエンハンサーが挿入されたり、イントロンの塩基配列が変わるとスプライシングに失敗したりするので、それなりに役割を主張しはじめる、言い換えれば進化的保存を要求することになります。

3ajoansteitz1941ともあれイントロンはタンパク質合成の際にアミノ酸配列として反映されることはないので、タンパク質をコードするRNA(すなわちmRNA)においては、必ずなんらかのメカニズムによって取り除かれなくてはいけません。

ジョアン・スタイツ(1941-、図3)らのグループは、small nuclear RNA という機能が不明だった核内のRNAが、タンパク質と複合体をつくって1群の small nuclear ribonucleoproteins (snRNP) をつくり、このsnRNPがmRNAのスプライシングにかかわっていることを示唆しました(3)。その後このsnRNP複合体はスプライソソームあるいはスプライセオソームなどとよばれています。

イントロンが取り除かれるプロセスを簡単に示したのが図4ですが、多くの場合イントロンはキャップ側の端がGU、ポリA側の端がAGとなっています。また中間部分に存在するAが重要な役割を果たします。その他ピリミジンリッチな配列とか、それぞれのsnRNPに親和性がある配列などがありますが、厳密には定められていません。

4a

第1のステップでは、キャップ側のGUがはずれて中間部のAと結合します。これはAの2の位置のOHがエクソン1右端の 3'-5' 結合を攻撃して切断し、AG結合をつくることによって実現します。この結果投げ縄のような構造が形成されます(図4)。第2のステップでは、エクソン1右端の3OHがエクソン2左端を攻撃して切断し、エクソン1とエクソン2が結合し、同時に投げ縄構造となったイントロンが切り離されます(図4)。

真核生物のイントロンは、細菌のような複雑な構造をとっているわけではなく、リボザイムではないので、図4のようなダイナミックな反応(スプライシング)は外部因子の力を借りて行われます。スプライシングを実行する外部因子とは U1、U2、U4、U5、U6 という snRNP で構成されるスプライソソームです。他の因子もかかわっていますが、ここでは省略します。詳細な知識が必要な方は参照文献(4)などを参照して下さい。

図5のようにまずU1がイントロンとエクソン1の境界部に結合します。U1はこの位置に結合するためのRNAを含んでいます。図ではぴったりイントロンのキャップ側(5' 側)の塩基配列と対合していますが、ぴったり対合する必要はありません。同時に中間部にあるAの近傍にU2が結合します。これにU4+U5+U6の複合体が結合してイントロンにテンションを発生させ、Aをエクソン1の右端に接近させてエクソン1とイントロンを切断します。

ここでU4がはずれ、U5+U6がエクソン1の右端とエクソン2の左端を接近させて連結させます。この反応によって、イントロンの投げ縄構造とそれに結合しているsnRNP群がはずれて、mRNAが完成します。

5a

こうして完成したmRNAですが、蛋白質合成に使用するためにはもう一手間かけなければなりません。それは核膜というバリアを抜けて、リボソームのある細胞質まで行かなければならないからです。核膜には核膜孔という関所のような穴があって、生体高分子はそこを通らないと核に入ったり核から出たりすることはできません。

ここを通過するためにmRNAが持つべき通行手形とその作成過程はまだ未知の部分があって、ワトソンの教科書などでもあっさりと通り過ぎています。Tapとp15という二つの蛋白質の複合体(ヘテロダイマー)が、mRNAにべったりくっつくことが重要だという説は正しいようですが(5)、まだわかっていない部分も多いと思われます。

参照

1)大濱武 遺伝子の中の厄介者、イントロンはどうしてなくならないか 生命誌 29号 (2000)
https://www.brh.co.jp/seimeishi/journal/029/ex_1.html

2)渡邊洋一、横堀伸一、河原林裕、原核生物遺伝子のイントロン 古細菌タンパク質遺伝子のイントロンの発見 蛋白質・核酸・酵素 vol.47, pp.833-836 (2002)

3)M.R. Lerner, J.A. Boyle, S.M. Mount, S.L. Wolin & J.A. Steitz, Are snRNPs involved in splicing? Nature vol.283, pp.220 - 224 (1980); doi:10.1038/283220a0
http://www.nature.com/nature/journal/v283/n5743/abs/283220a0.html

4)J.D. Watson et al. Molecular Biology of the Gene 6th edn.  (2008) or 7th edn (2013)

5)大阪大学大学院 米田研究室のサイト: 
http://www.anat3.med.osaka-u.ac.jp/research/research3_1.html

|

2016年12月28日 (水)

生物学茶話@渋めのダージリンはいかが54: mRNAへの道1

細菌では転写が行われると、通常できたばかりのRNAにリボソームがくっついて翻訳(RNAからタンパク質へ)が開始されます。ですから鋳型DNAと転写されたRNAと翻訳工場のリボソームが一体化した状況の電子顕微鏡写真が撮影されています。

しかし真核生物ではそうはいきません。転写は核内で行なわれますが、リボソームは核の外の細胞質内にあります。従ってRNAを核膜を通過させて核の外に出し、そのRNAをリボソームまで導かなければなりません。

このようなプロセスを裸のRNAにやらせようとすると、リボソームにたどり着く前にヌクレアーゼで分解されて影も形もなくなってしまうでしょう。そこで転写されたRNAには直ちに5’側にはキャップ、3’側にはポリAテイルが付加されて、端からRNA分解酵素にかじられるのを防いだり、自らがmRNAであることのシグナルとして機能させたりという役割を与えられています(図1)。

キャップとテイルは翻訳領域に直接つけられるのではなく、それぞれ翻訳されない領域 (5'-UTR=5' untranslated region, and 3'-UTR=3' untranslated region) で隔てられた部分につけられます。つまりmRNAはその全域がタンパク質の情報として翻訳されるのではなく、翻訳領域の両側(上流・下流)に余裕を持って非翻訳領域を配置し、さらにその両端にキャップとテイルを配置するような構造になっています(図1)。

A

キャップの存在を発見したのは古市泰宏 で、当時の事情は彼自身が詳しいレビューを出版していますし(1)、日本語での自慢話も読めます(2)。

図2に示したように、転写されたRNAの5’末端ではリボース2つの2’の位置がメチル化されていて、さらに末端に7-メチルグアノシン3リン酸が5’-5’という奇妙な配位で結合しています。通常ヌクレオチドは5’-3’結合しかしないので、生化学的にこれは特殊な例と言えます。この構造のために通常のエクソヌクレアーゼはアクセスできなくなっています。

A_2

ポリAポリメラーゼはすでに1960年にエドモンズらによって発見されていましたが(図3、参照3)、ながらく何のためにあるのかわかりませんでした。転写されたRNAのテイルにポリAを付加するためだとわかったのは10年以上後になります(4,5)。転写されたRNAにキャップがかぶせられるのは数秒以内。テイルが付加されるのは30秒以内だとされています(6)。

EdmondsaポリAテイルがどのような役割を担っているかは現在でもホットな研究課題です。ポリAテイルに親和性をもつタンパク質は数多く、例えばPABP1というタンパク質ひとつとってみても、翻訳の開始、翻訳の促進、翻訳の抑制、mRNAの安定化、mRNAのターンオーバーなど驚くほど多彩なプロセスに関わっているようです(7)。

キャップとテイルでmRNAの加工は終わりかと思われていたのですが、1977年になって予想外の事態になりました。当時DNAとDNA、DNAとRNAを試験管の中で対面させて、相補的な塩基配列を持つ部分を結合させる(ハイブリダイゼーション)という技術が開発され、また電子顕微鏡で核酸分子を検鏡する技術も開発されました。

そこでアデノウィルスの完成された殻タンパク質をコードするmRNAと遺伝子DNAをハイブリダイズさせてみると、ぴったりとは符合せず、DNAに余ってループをつくる部分ができることがわかりました(8)。これは転写されたRNAの一部が切り離されたために、DNAの一部がハイブリッドを形成できなかったことを示唆します。

このような実験結果は、図4のような模式図によって説明できます。切り離される部分をイントロンといいます。イントロンの塩基配列は当然タンパク質の構造には反映されず、mRNAは残されたエクソンとキャップとポリAテイルによって構成されます(図4)。イントロンが切り離され、エクソンが結合されるプロセスをスプライシングとよびます。イントロンが切り離される前のRNAをプレmRNAとよびます。核に存在するmRNA、rRNA、tRNA以外のRNAをまとめてhnRNA(heterogenous nuclear RNA) とよぶこともあります。hnRNA がプレmRNAを意味する場合もあります。

A_3

レダーらのグループはより明確にスプライシングの存在を証明しました。彼らはマウスのβグロビン遺伝子の塩基配列を完全解明し、どこからどこまでがエクソン、どこからどこまでがイントロンなどの詳しい研究結果を示しました(図5、参照9)。これによって遺伝子が内部のふたつのイントロンによって分断されていることがわかりました。福岡大学のサイトにβグロビン遺伝子の全塩基配列やエクソン・イントロンの位置などが示されています(10)。

A_4

細菌や古細菌にも遺伝子の分断はみられますが、一般的ではありません。真核生物でも酵母やカビにはごく少数しかみられませんが、ヒトやマウスでは遺伝子ひとつあたり平均7~8ヶ所の分断がみられます(11)。

参照:

1) Yasuhiro Furuichi,  discovery of m7G-cap in eukaryotic mRNAs. Proceedings of the Japan Academy, Series B
Vol. 91 (2015)  No. 8  p. 394-409
https://www.jstage.jst.go.jp/article/pjab/91/8/91_PJA9108B-01/_article

2)古市 泰宏  走馬灯の逆廻し:RNA研究、発見エピソードの数々|はじめに キャップ構造の発見
https://www.rnaj.org/component/k2/item/383-furuichi-1

3)Edmonds M, Abrams R., Polynucleotide biosynthesis: Formation of a sequence of adenylate units from adenosine triphosphate by an enzyme from thymus nuclei. J Biol Chem 235: 1142–1149. (1960)

4)Edmonds M, Vaughan MR, Nakazato H. 1971. Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: Possible evidence for a precursor relationship. Proc Natl Acad Sci 68: 1336–1340. (1971)

5)Darnell JE, Philipson L, Wall R, Adesnik M. Polyadenylic acid sequences: Role in conversion of nuclear RNA into messenger RNA. Science 174: 507–510. (1971)

6)JE. Darnell, Jr., Reflections on the history of pre-mRNA processing and highlights of current knowledge: A unified picture. RNA vol.19, pp. 443-460 (2013)
http://rnajournal.cshlp.org/content/19/4/443.full

7)Richard W.P. Smith, Tajekesa K.P. Blee and Nicola K. Gray, Poly(A)-binding proteins are required for diversebiological processes in metazoans. Biochem. Soc. Trans. vol. 42, pp. 1229–1237 (2014) doi:10.1042/BST20140111

8)Berget S.M., Moore C., Sharp P.A., Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Proc. Nati. Acad. Sci. USA, Vol. 74, pp. 3171-3175, (1977)

9)Konkel DA, Tilghman SM, Leder P. The sequence of the chromosomal mouse β-globin major gene: Homologies in capping, splicing and poly(A) sites. Cell vol.15, pp.1125–1132. (1978)
http://www.cell.com/cell/fulltext/0092-8674(78)90040-5

10)http://www.sc.fukuoka-u.ac.jp/~bc1/Biochem/transcrp.htm

11)J.D. Watson et al. Molecular Biology of the Gene 6th edn p.416 (2008)

|

2016年12月23日 (金)

生物学茶話@渋めのダージリンはいかが53: 転写2

転写1では細菌の転写について述べましたが、転写2では真核生物について述べます。細菌でも真核生物でもDNAの情報をRNAにコピーして、それを設計図としてリボソームでタンパク質を合成するという方式にかわりはありません。

まず細菌のRNAポリメラーゼと真核生物のRNAポリメラーゼ II を比較してみると(図1、参照1)、真核生物のRNAポリメラーゼ II は細菌の酵素の構成要素である5つのサブユニットと相同のサブユニットを保持していて(α2:RPB3&RPB11、β:RPB2、β’:RPB1、ω:RPB6)、さらに7つのサブユニットが追加されたような構造になっています。

A

これはゲノムのサイズが大きくなり、多種多様なタンパク質を適切な時期に発現させるという複雑なニーズに対応したものと考えたくなりますが、実は細菌よりゲノムサイズが小さめの古細菌(アーケア)のRNAポリメラーゼの構造は、細菌の酵素より真核生物のRNAポリメラーゼに圧倒的に近いということから(1,2)、この考え方は否定されます。古細菌は見た目は細菌と同じなのですが、生命現象の基幹的な部分が真核生物に近いという意味で、進化の最大の謎といっても過言ではありません。真核生物はこのグループから進化したと考えられていますが、その詳細は不明です。

古細菌も真核生物も構造は異なりますがクロマチンというDNAを保護する重層的な3次元構造を持っているため(3)、そのような障害を乗り越えて転写を行うためにサブユニットが増加したという考え方は可能でしょう。また真核生物は細菌より古細菌と近縁な関係にあることのひとつの強力な証拠でもあります。真核生物のRNAポリメラーゼ I および III は II よりもさらにサブユニットが増えており(1)、II を基本としてそこから派生したものと考えられます。

古細菌や真核生物においても転写に際しては細菌と同様なプロモーターが存在し、細菌の-10領域の配列を進化の中で引き継いだと思われるTATAボックスといわれる配列が存在します。この配列は厳密に指定されいるわけではありませんが、5'-TATA(A or T)A(A or T)G-3' のようにTATAという配列を含むものが多く、TATAボックスとかTATAエレメントなどと呼ばれています。

この配列は細菌ではシグマ因子が認識するわけですが、古細菌や真核生物ではTBP(TATA binding protein)という転写因子が認識します。TBPはRNAポリメラーゼのサブユニットではなく、真核生物の場合、TFIIDという巨大な転写因子のサブユニットとして機能します(図2)。図2にみられるように、真核生物の場合細菌よりも多数のプロモーターが存在し、転写開始点をまたいでいるものや、転写開始点より下流にあるものもあります。実は真核生物の場合、転写開始点からすぐ mRNA が読み取られるのではなく、mRNAの塩基配列はかなり下流からはじまるので、このようなことが起こりうるわけです。

A_2

図2に示したように、それぞれのプロモーターにはその配列に結合する転写因子が存在し、GCボックス-Sp1、CAATボックス-NF-Y、BRE(B recognition element)-TFIIB、TATAボックス-TBP、Inr(initiator element)・DCE(downstream core element )I~III・DPE(downstream promoter element)-TFIID などという組み合わせになっています。

当初すべての生物に普遍的に存在するTATAボックス-TBPが特に重要と考えられていましたが、真核生物ではすべての遺伝子のうちTATAボックスを持っているのは20%以下という調査結果が報告されており(4~6)、さらに同じ生物の同じ遺伝子でも組織によって使用するプロモーターが異なるというデータもあります(7)。したがって古い教科書を書き換える必要性がでてきました。

TFIIDはTAF1~15とAF4B・AF9B、そしてTBPという多数のサブユニット(全部そろっているとは限らない)で構成される巨大な転写因子複合体で、転写開始に直接的にかかわっていると考えられます(8)。TATAボックスがなくTBPを欠いている場合は、転写開始の位置が正確ではなくなり、複数の位置から開始される場合があることが知られています。実際に転写が開始される場合、TFIIDだけでなく、TFIIA・TFIIB・TFIIFなども加わって、さらに巨大な転写因子複合体を形成し、RNAポリメラーゼを所定の位置に配置した後、RNAポリメラーゼの一部をリン酸化することによって複合体から解離させて転写を開始させることになります(図3)。

A_3

真核生物の場合、DNAはヌクレオソームにまきつき(後の稿で述べます)、クロマチンという3次元構造をとっているので、それらをほぐさないと転写ができませんし、外部からの指令もさまざまな形できますので、TFIIグループの転写因子複合体だけでは遺伝子発現の調節に対応できません。したがってDNAが3次元的に折れ曲がっていることを利用して、遺伝子から離れた位置にあるプロモーターやエンハンサー配列に結合する因子なども遺伝子発現に影響を与えることができるようなシステムになっています。

このため遺伝子発現を調節するためのタンパク質複合体は数メガダルトンという巨大なサイズになることもあります(図4)。このようなシステムは細菌や古細菌にはありません。

A_4

このようにして転写は進みますが、どこかで終結させなければなりません。古細菌ではすでに細菌が行っているρ因子やステムループを用いる転写終結をやめていて(9)、真核生物も別のメカニズムで転写を終結させています(10)。

真核生物の場合、例としてβ-グロビンの場合を図5に示してありますが、転写開始がmRNAの先頭からはじまるわけではないように、転写終結も終止コドンの位置で終わらず、さらに下流まで転写は継続します。そしてAATAAAというポリA付加シグナルという塩基配列があると、その少し下流の転写終結シグナルTTTT、TTGCのところで転写は終結します。このあたりは厳密には指定されてはおらず、例えばポリA付加シグナルの何塩基下流でとか、終結シグナルがひとつでもあれば必ず止まるとかというわけではありません。実際TTTTはスルーされています。転写されたRNA3'末端には、ポリAポリメラーゼという特殊なRNAポリメラーゼによって、鋳型なしにAが連続的に付加されます(図5)。

A_2

転写されたRNAをmRNAに加工するメカニズムは次稿で述べます。

参照:

1) Guy Drouin and Robert Carter, Evolution of Eukaryotic RNA Polymerases. eLS, DOI: 10.1002/9780470015902.a0022872
(2010).
http://www.els.net/WileyCDA/ElsArticle/refId-a0022872.html

2) 平田章, 古細菌の転写装置. 生化学 vol. 81, pp. 377-381 (2009)
こちら1

3) Tanaka T1, Padavattan S, Kumarevel T., Crystal structure of archaeal chromatin protein Alba2-dsDNA complex from Aeropyrum pernix K1. Jornal of Biological Chemistry, vol. 287, pp. 10394-10402 (2012), doi: 10.1074/JBC.M112.343210
http://www.riken.jp/pr/press/2012/20120224_3/

4) https://ja.wikipedia.org/wiki/TATA%E3%83%9C%E3%83%83%E3%82%AF%E3%82%B9

5) Civán P1, Svec M., Genome-wide analysis of rice (Oryza sativa L. subsp. japonica) TATA box and Y Patch promoter

elements. Genome. vol. 52, pp. 294-297. doi: 10.1139/G09-001. (2009)
https://www.ncbi.nlm.nih.gov/pubmed/19234558

6) http://www.osc.riken.jp/english/activity/cage/achievements/

7) Paul Gagniuc1 and Constantin Ionescu-Tirgoviste, Eukaryotic genomes may exhibit up to 10 genericclasses of gene promoters. BMC Genomics , vol.13, pp.512-527 (2012), DOI: 10.1186/1471-2164-13-512
こちら2

8) Robert K. Louder,  Yuan He, José Ramón López-Blanco, Jie Fang, Pablo Chacón & Eva Nogales , Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature  vol. 531, pp. 604–609 (2016)
http://www.nature.com/nature/journal/v531/n7596/abs/nature17394_ja.html

9) 房富 絵美子 他 古細菌型転写終結因子NusAの結晶構造解析及びRNA結合解析
こちら3

10)杉本崇 真核生物mRNA3′末端プロセシング研究の新展開  生化学第86巻第1号,pp. 77~80(2014)
こちら4

|

2016年12月16日 (金)

生物学茶話@渋めのダージリンはいかが52: 転写1

No.46:リボソームですでに述べたように、1960年頃にはすでにリボソームがタンパク質の製造工場であることはコンセンサスになっていました。トランスファーRNA(tRNA)の役割もわかってきていました。すなわちリボソームに存在するRNAの情報に基づいて、アンチコドンを持ちアミノ酸を運ぶ tRNAが、順次リボソームにアクセスすることによって、タンパク質が合成されることになります。

しかし当初リボソームが持つRNAは、それぞれのリボソームに特異的であり、そのリボソームがそれぞれ別々のタンパク質を合成するという考え方が一般的でした。ですからこの頃にはまだメッセンジャーRNA(mRNA)という概念はありませんでした。44:メッセンジャーRNAで、ブレナー・ジャコブ・メセルソンがDNAからリボソームに情報を運ぶ不安定なRNAが存在することを示唆する研究を行ったことを述べましたが、この1961年の研究を出発点としてDNAからmRNAを合成するメカニズムの研究が進展しました。DNAを鋳型としてmRNAが合成されるプロセスを転写(transcription) といいます。

ただ彼らの実験でmRNAの構造と機能が明らかになったわけではなく、あくまでもこれは端緒にすぎません。マシュー・コブ は「誰がmRNAを発見したのか?」という科学エッセイを発表していますが(1)、どうも明快な結論はないようです。ニレンバーグとレダーは大腸菌の無細胞系(大腸菌をすりつぶした抽出液)に、ポリUを入れるとフェニルアラニンがタンパク質にとりこまれることを証明しましたが、このポリUはまさしくmRNAなわけで、ニレンバーグとレダーが発見者という見方もできます。

また後にニレンバーグとマタイは大腸菌の無細胞系にさまざまなポリリボヌクレオチドを投入して、タンパク質合成がこれらのポリリボヌクレオチドに依存していることをみています(2)。コブはブレナーらの実験と共にこの仕事を重視しています。

Aleder_philアヴィヴとレダーの実験も完成品の美しさがあります。彼らはうさぎのグロビン(ヘモグロビンを構成するタンパク質)のmRNAをオリゴdTセルロース法という方法を使って精製し、がん細胞をすりつぶした抽出液の無細胞系で、うさぎのグロビンを合成することに成功しています(3)。

大腸菌の無細胞系とファージを使った実験というのはユニバーサリティに欠けると思います。ファージは生物ではありませんしね。グロビンmRNAの実験を行ったフィリップ・レダー(図1、1934~)は、ニレンバーグと共にコドンの最初の解読者であり、mRNAの機能を確定し、グロビンの遺伝子が分断されていることをも発見した(4)という卓越した業績の研究者であるにもかかわらず、ノーベル賞は授与されていません。遺伝子の分断の件でも。ファージのグループが受賞して彼ははずされました。全く理不尽なことだと思います。

リボソームRNA(rRNA)やトランスファーRNA(tRNA)が安定な物質であるのに対して、メッセンジャーRNA(mRNA)は壊れやすい不安定な物質です。rRNA・tRNAはハウスキーピングないつも必要なものであるのに対して、mRNAは必要なときだけにあればよいものだという意味で、この違いは合理的です。たとえばラクトースが周りに豊富にあるときには、大腸菌はラクトース分解系のタンパク質をコードするmRNAが必要ですが、ラクトースがなくなれば必要ありません。ジャコブとモノーは、リプレッサーが通常はオペレーター領域に結合していて、ラクトースの存在によってリプレッサーとDNAの結合が解かれ、RNA合成がはじまることを示しましたが、これは最も単純な例であって、実際のRNA合成の制御機構ははるかに複雑を極めるものです。

DNAを複製するのはDNAポリメラーゼであるのに対して、DNAを鋳型としてRNAを合成するのがRNAポリメラーゼです。DNAポリメラーゼが dATP, dTTP, dGTP, dCTP を基質とするのに対して、RNAポリメラーゼは ATP, UTP, GTP, CTP を基質とします。DNAポリメラーゼが 3'OH を起点として必要とするのに対して、RNAポリメラーゼは必要としません。ですからRNAポリメラーゼはRNA合成をはじめる基点を他の因子に決めてもらう必要があります。DNAポリメラーゼには多くの種類がありますが、RNAポリメラーゼは特殊なものを除いて細菌では1種類、真核生物では3種類しかありません。真核生物の3種類とそれぞれの役割は、RNAポリメラーゼ I:rRNAの合成、RNAポリメラーゼII:mRNAの合成、RNAポリメラーゼIII:tRNAと一部のrRNAの合成となっていて、さまざまなRNAを分業で合成しています。

まず大腸菌のRNAポリメラーゼについてみていきましょう(図2)。RNAポリメラーゼのコア酵素は5つのサブユニット(α、α、β、β’、ω)からなり、転写を開始する際にはσ因子が結合してホロ酵素の状態になります。σ因子が転写を開始する位置を指定します。細菌の場合、転写を開始する位置から上流側(鋳型鎖の3’側)に10ヌクレオチドおよび35ヌクレオチドあたりにσ因子と親和性の高い塩基配列(プロモーター配列)があり、σ因子はこのふたつのサイト周辺の塩基配列を認識してDNAと結合し、RNAポリメラーゼが転写を始める位置を指定します。このふたつのプロモーターサイトは-35領域、-10領域と呼ばれます。

A

プロモーター配列は厳密に決まっているわけではなく、一例を挙げれば TGTTGACA(-35領域)、TATAAT(-10領域)などがあります。これらにσ因子が結合することによってRNAポリメラーゼと隣接DNAの立体構造が変化して、閉じられていたDNAの2重鎖が開いて、鋳型鎖の情報をRNAポリメラーゼが読み取ることができる状況になります。そしてRNAポリメラーゼは+1の位置から転写を開始します(図3)。もちろんこのときリプレッサーはDNAからはずれていなければなりません。

A_2

大腸菌は7種類のσ因子を持っていることが知られており、分子量に応じて分類されています(例えば分子量約7万のものはσ70)。
σ19、σ24、σ28、σ32,σ38、σ54、σ70のうち、通常はσ70が使われています。σ28は鞭毛専用。ヒートショックを受けた場合はσ24・σ32、飢餓の場合はσ38など用途や状況によって使い分けているようです(5)。それぞれのσ因子によって、当然親和性の高いDNA塩基配列も異なります。単細胞の細菌でも7種類の転写部位を指定する因子があるわけですが、真核生物の場合このような細菌のやり方を拡張し、非常に複雑な転写指定を行うことによって細胞の多彩なニーズに対応するように進化しました。これについては後程述べます。

σ因子のはららきで転写を開始したRNAポリメラーゼですが、では転写を終結する位置はどのように指定されているのでしょうか? これには2つの方法があって、ρ因子依存性と非依存性と呼ばれています(6)。ρ因子は図4Aのように6個のρタンパク質がドーナツのように集合した因子で、Cが多い rut site という配列を認識してDNAに結合し転写を終結させます。ただし詳しいメカニズムはわかっていないようです。ρ因子非依存性の終結メカニズムは、転写されたmRNAがヘアピンのような構造をとることがポイントです。このような部分的二重鎖をつくるために、DNAおよびmRNAの一部に回文構造(パリンドローム)が形成されています。回文とは「竹藪焼けた」のように前から読んでも後ろから読んでも同じと言う文章ですが、塩基配列でこのようになっている部分(図4B赤線)がなっていない部分を挟んで存在すると、図4B右側の図のようにヘアピン構造を形成します。

A_3

ヘアピン構造のあとにUUUUUUUUという配列がありますが、このような場合DNAとmRNAの親和性が弱いことがわかっており、転写終結後、mRNAがDNAから離れるために有効であると考えられています。ここで述べてきたのは細菌の転写機構のお話です。真核生物については次の稿で。

参照:

1) Matthew Cobb, Who discovered messenger RNA?,  Current Biology 25, R523-R532 (2015)

2) M.W. Nirenberg  and J.H. Matthaei, The dependence of cell-free protein synthesis in E. Coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA vol.47, pp.1588-1602 (1961)

3) H. Aviv and P. Leder, Purification of biologically active globin messenger RNA by chromatography of oligothymidylic acid-cellulose. Proc Natl Acad Sci USA vol.69, pp.1408-1412 (1972)

4) Konkel DA, Tilghman SM, Leder P. The sequence of the chromosomal mouse β-globin major gene: Homologies in capping, splicingand poly(A) sites. Cell vol.15, pp. 1125–1132. (1978)

5) https://en.wikipedia.org/wiki/Sigma_factor

6) J.D. Watson et al. Molecular Biology of the Gene 6th edn. pp.394-395 (2008)

|

2016年12月11日 (日)

生物学茶話@渋めのダージリンはいかが51: オペロン説

フランソワ・ジャコブ(1920~2013、図1)がパリ大学の医学部に入学してしばらくした頃、ドイツでナチが台頭し、フランスに攻め込んでくる状況になりました。20世紀における分子生物学の爆発的進展は、二重らせんのワトソン&クリックと、岡崎フラグメントの岡崎以外は、多くはユダヤ人の業績なのですが、ジャコブもご多分に漏れずユダヤ人だったので、生命の危機を感じてロンドンに脱出しました。

A

しかし彼はそこで医学生として勉強を続けるのではなく、自由フランス軍の兵士として参戦する道を選び、衛生兵としてアフリカを転戦しているうちに負傷して入院生活をおくることになりましたが、回復後再び参戦し、今度はノルマンディー上陸作戦に参加しました(1)。ノルマンディーでの戦闘がどんなにすさまじいものだったかは、スピルバーグの「プライベート・ライアン 原題:Saving private Ryan」という映画をご覧になった方ならご存じでしょう。
https://www.youtube.com/watch?v=82RTzi5Vt7w
https://www.youtube.com/watch?v=Chzhf7gQxIg
https://www.youtube.com/watch?v=5v45or8lFWg
https://www.youtube.com/watch?v=ji8fQUn0OQE

ジャコブはこの戦闘で爆弾の破片が100個以上も体に突き刺さるという重傷を負い、九死に一生を得て野戦病院に収容され、戦争が終結してからパリに送られました。大学にもどるまでに治療とリハビリで4年もかかったそうです(2)。結局その後の研究も、体の中に摘出できなかった破片をかかえこんだままで行なわれました。

しかし長いブランクの影響は大きく、ようやく医師の資格は得たものの、臨床医としてやっていくモチベーションもなくしてしまい、軍隊時代の伝手でペニシリンセンターに就職して研究者としての道を歩み始めました。ところがそのセンターもまもなく倒産して路頭に迷ってしまいました。そしてまたなんとか伝手をたどってパスツール研究所にもぐりこみました。

ジャコブはルウォフの研究室に所属し、そこでモノーと出会うことになります。モノーも戦争中はレジスタンス軍の参謀としてパリで地下活動を行っていました。しかしジャコブの最初の重要な共同研究者はエリー・ウォルマンでした。エリーの両親ユージンとエリザベスは溶原性ファージ(細菌のDNAに組み込まれるファージ=プロファージ)を発見した研究者でしたが、実験室でゲシュタポに捕らえられ、アウシュビッツに送られてしまいました。エリーはそんな両親の衣鉢を継ぐために微生物の研究者になりました(3)。

エリーと共にジャコブは大腸菌に性因子が存在すること。それはオスの大腸菌の中で別荘のような小さな独立のDNAとして存在し(現在はプラスミドと呼ばれている)、接合の際に本家のDNAと共にメスに送り込まれるということを発見しました。このことが遺伝子の制御という生物学上の大問題を解決する糸口になろうとは、当初誰も考えていなかったのでしょう。

ジャコブと同じルウォフの研究室に所属していたジャック・モノー(1910~1976、図1)は、以前から大腸菌がラクトースを消化して栄養源とする過程を分析していましたが、大腸菌は普段はこのために必要な酵素をつくっていなくて、周りにラクトースが出現したときだけに合成するということを見いだしていました。ジャコブらの実験をみていたモノーは、ジャコブらと協力して、ラクトース分解酵素を合成できないメス株と合成できるオス株とを接合させ、オスのDNAがメスに取り込まれる過程を追って酵素活性を測定しました。

そうするとメスに遺伝子が移転された途端に酵素活性が上がりますが、30分後には活性が失なわれたのです。これはラクトース分解酵素とは別の因子がメスに存在し、この因子(リプレッサー)が酵素の発現を抑制したと想像されました。彼らはさらに研究を続けてオペロン説という遺伝子制御の基本となる理論を打ち立てました(4,5)。

オペロン説というのは図2Aのように、ラクトースが無い状態ではDNAにリプレッサーが結合していて、RNAポリメラーゼはプロモーターの位置にとどまり、DNAの情報を読み取れない状況にありますが、ラクトースが存在するとリプレッサーはラクトースと結合してDNAから離れ(図2B)、RNAポリメラーゼは情報を読み取り始めるという機構です。しかもラクトースの代謝に必要な酵素やタンパク質の遺伝子はオペレーター部位を先頭に並んでいて、まとめて制御されています(6)。

A_2

DNA上に並ぶ遺伝子6、7、8(図2)がコードするタンパク質はそれぞれ、β-galactosidase (遺伝子名LacZ)、β-galactoside permease(遺伝子名LacY)、β-galactoside transacetylase (遺伝子名LacA)です。β-ガラクトシダーゼはラクトースをガラクトースとグルコースに分解する酵素(図3)。β-ガラクトシドパーミエースはラクトースなどを細胞に取り込むための細胞膜のタンパク質、β-ガラクトシドトランスアセチラーゼはラクトースなどにアセチル基を転移する酵素です。

A_3

リプレッサーを精製し、それがオペレーター領域に結合することはローゼンバーグらによって後に確認されました(7)。オペロン説はもうひとつ重要な課題を提起しました。それはリプレッサーがラクトースを結合することにより構造変化をおこして、DNAとの親和性に変化をきたすという考え方で、これはアロステリック効果と呼ばれるタンパク質化学において重要なテーマであり、その後もこのラクトースオペロンにおけるリプレッサーを材料としても、現代に至るまで詳しく研究されています(8,9)。

オペロン説は複数の遺伝子がひとつのオペレーター領域で制御されていることが注目されたため、そのようなことがほとんどない真核生物を含めると意義が薄れた感もありますが、むしろ遺伝子はタンパク質をコードする領域だけでできているのではなく、「プロモーターやオペレーターなどの制御領域とセットとなって一人前」という概念を提供したことに意義があると思われます。ジャコブ・モノー・ルウォフは1965年度のノーベル医学生理学賞を受賞しました。

参照:

1)Francois Jacob - Biographical.
https://www.nobelprize.org/nobel_prizes/medicine/laureates/1965/jacob-bio.html

2)分子生物学の軌跡 野島博著 化学同人社刊 (2007)

3)Rudolf Hausmann, To grasp the essence of life -A history of molecular biology. Kluwer Academic Publishers (2002)

4)Francois Jacob and Jacques Monod, Genetic regulatory mechanisms in the synthesis of proteins., J. Mol. Biol. vol.3, pp.318-356 (1961)

5)http://libgallery.cshl.edu/items/show/74013

6)https://en.wikipedia.org/wiki/Lac_operon

7)J M Rosenberg, O B Khallai, M L Kopka, R E Dickerson, and A D Riggs, Lac repressor purification without inactivation of DNA binding activity. Nucleic Acids Res. vol.4, pp. 567–572. (1977)

8)Robert Daber, Steven Stayrook, Allison Rosenberg, Mitchell Lewis, Structural Analysis of Lac Repressor Bound to Allosteric Effectors. Journal of Molecular Biology, Volume 370,  Pages 609-619 (2007)

9)松下祐貴,島村香菜子,大石叡人,大山達也,栗田典之, ラクトースリプレッサーとDNA複合体へのアロステリック効果の解析:古典MD及びab initioフラグメントMO計算, 第37回情報化学討論会, P12, (2014)
https://www.jstage.jst.go.jp/article/ciqs/2014/0/2014_P12/_pdf

|

2016年12月 7日 (水)

生物学茶話@渋めのダージリンはいかが50: DNA修復2

ジャン・ジャック・ワイグル(1901~1968)はもともとはスイスでX線解析などをやっていた物理学者だったのですが、なぜか米国に渡って微生物学者になりました。彼は1953年に不思議な現象を発見しました。彼が培養していたラムダファージを紫外線で不活化し(=殺し)、それを紫外線を照射した大腸菌にとりこませると、ファージは再活性化される(=生き返る)のです(1)。

ワイグルが発見した現象は、その後数十年かけて徐々にその全貌は解明されつつあります。驚くべきことに、この現象は細菌からヒトを含む真核生物に連綿と受け継がれた「DNA乗り越え修復 translesion DNA repair = TLS DNA repair」という機構に基づくものであることがわかりました。普段は隠れていたこの機構が、紫外線を照射されるという危機的な状況で表に現れ、生命を救うのです。ですからSOSリペアなどともよばれていました。

図1に示すように、DNA複製の際にDNAに損傷が発生し、DNAポリメラーゼがその位置で停止してしまうと、そこから先のDNAは複製されず、細胞はアンダー・コンストラクションの状態で死を待つことになります。通常2本鎖DNAの片側に損傷が発生した場合、その部分を切り取って、対面のDNA配列を利用して修復することができます(http://morph.way-nifty.com/lecture/2016/11/post-455d.html)。しかしDNA複製の際には複製フォーク(レプリケーションフォーク)が形成されているため、損傷部位の対面配列は離れた位置にあり利用できません(図1)。

A

この問題を解決するために、細菌は「DNA損傷乗り越え修復」という技を編み出しました。道で事故車が止まっていたときに、それをレッカー車で移動してから通過するのではなく、いったん歩道に乗り上げて事故車を通過するというような強引なやり方です。損傷部位に乗り上げたDNAポリメラーゼIIIは離脱し、RecAというタンパク質がATPを使ってRecA複合体を形成すると共に、DNAポリメラーゼVと共同して損傷部位の対面のDNAを延長します。

なぜこの酵素だと延長できるかというと、DNAポリメラーゼVは厳密にワトソンクリック型の対面ヌクレオチドを合成するのではなく、かなり特異性が低いという特徴をもっているからです。別の言い方ではフィデリティー(忠実度)が低いとも言います。ですから図2ー2または3にみられるようにTに対してGをもってきたりするわけです。

ですがフィデリティーの低さは逆に壊れているTも壊れていないヌクレオチドと認識することができるという利点があります。このためDNAポリメラーゼIIIが読めなくて停止するような場合(図2-1)でも、涼しい顔で通り過ぎることができるわけです。損傷部位を通り過ぎた段階でDNAポリメラーゼVはお役御免で、DNAポリメラーゼIIIにふたたびバトンタッチします(図2-4)。このプロセスを実行した結果間違った塩基配列が形成されたとしても、とりあえず細胞は死を逃れることができます。

A_2

DNAポリメラーゼVは忠実度の低い酵素なので、通常は使われないよう厳しく管理されています。大腸菌に紫外線を照射して数十分後にようやくこの「DNA損傷乗り越え修復」という機能が発動します。つまり他の忠実性の高いシステムで修復を試みて、どうしても修復できない場合の最後の手段として使うという意味もあるようです。DNAポリメラーゼII や DNAポリメラーゼIV もDNA乗り越え修復の機能があるようですが、詳細は不明のようです(2)。

DNAポリメラーゼVなどのTLSポリメラーゼ(乗り越え修復DNAポリメラーゼ)は、細菌・古細菌で類似しているだけでなく、真核生物においてもその遺伝子構造が引き継がれており、ヒトも例外ではありません。このような祖先生物から複数の種に機能・構造が引き継がれている遺伝子をオルソログといいます。真核生物のTLSポリメラーゼにはイオタ、エータ、ゼータ、カッパがあります。大腸菌のPolIV・PolV、古細菌のDpo4、真核生物のPolイオタ・Polエータ・PolカッパはYファミリーとよばれるオルソログ、大腸菌のPolIIと真核生物のPolゼータはBファミリーというオルソログのグループを形成しています(2)。

このほかにも2本鎖がどちらも切断されたときとか、組み替え修復などの機構を生物は持っていますが、ここでは触れません。

いろいろなDNAポリメラーゼが話しの中に出てきて混乱するので、大腸菌と真核生物の各種DNAポリメラーゼをリストアップして、簡単な解説をつけることにしました。

===========================

E.Coli(大腸菌)

-----------------------------------------------------------------------
DNAポリメラーゼ I :

1956年に、アーサー・コーンバーグによって最初に発見されたDNAポリメラーゼ。この酵素が働かなくても大腸菌は生存可能なので、DNAの複製に必須ではありませんが、このような株は紫外線の感受性が高いことが知られています。またこの酵素はTSL型ではないため、主に各種除去修復の際のDNA合成に関与していると考えらています。この酵素の特徴はエキソヌクレアーゼ活性(3'→5')を持っていることで、そのことによって間違った塩基のペアができた場合、鋳型の上を逆走してそれらを分解し、DNA合成をやりなおすことができます。これは校正機能とよばれています。

また逆方向(5'→3')のエキソヌクレアーゼ活性も持っているため、おしりでDNA合成しながら頭でDNA分解を行うことができます。したがって頭の位置にあるDNAの断点(ニック)を、結果的に進行方向にずらしていくことが可能で、これをニックトランスレーションと呼びますが、この反応を行わせるときに放射性のヌクレオチドを入れておくと、DNAが放射能で標識されます。この機能を使えば手持ちのDNAをとりあえず標識できるので、研究上便利です。

この酵素がなくても大腸菌は生存可能とはいえ、あった場合はDNAの複製に関与すると言われています。ウィキペディアによるとRNAプライマーが分解されたあとのギャップを埋めるのに使われるとされています。
https://en.wikipedia.org/wiki/DNA_polymerase_I

この酵素は真核生物のミトコンドリアに存在するDNAポリメラーゼガンマとオルソログであり、Aファミリーを形成します。

DNAポリメラーゼ II :

この酵素はDNAポリメラーゼI と同様な校正機能を持っていて、しかも忠実度(フィデリティー)が非常に高いので、DNAポリメラーゼIIIが正しいペア形成に失敗したときに修正する機能があるとされています。ラギング鎖のDNA合成を行なうとも言われています。DNAにクロスリンクができてしまったときの処理に働いているという説もあります。バックアップ用の酵素かもしれませんが、まだ未解明な部分が多いと思われます。
https://en.wikipedia.org/wiki/DNA_polymerase_II

大腸菌のDNAポリメラーゼIIは古細菌から発見されたPol B1, Pol B3、真核生物の Polアルファ、Polデルタ、Polイプシロン、Polゼータなどとオルソログであり、Bファミリーを形成しています。細菌のDNA複製の主役はDNAポリメラーゼIII(Cファミリー)なのですが、古細菌や真核生物はこれを没にして、Bファミリーの酵素群を主役に抜擢しています。

DNAポリメラーゼ III :

トーマス・コーンバーグとマルコム・ゲフターによって1970年に報告されました。細胞増殖のために行われるDNAの複製を担う酵素としては、はじめて発見されたDNAポリメラーゼです。DNA合成を行うために他の多くの因子とDNAレプリソームという複合体を形成して働きます。3'→5'エキソヌクレアーゼ活性を持っており、校正機能があります。
https://en.wikipedia.org/wiki/DNA_polymerase_III_holoenzyme

DNAポリメラーゼIIのところで述べたように、この酵素ファミリー(Cファミリー)は古細菌や真核生物では用いられていません。非常に完成度が高かったため、生物の変化に対応できなかった可能性があります。

DNAポリメラーゼIV:

DNA損傷乗り越え修復を行なう酵素です。DNA合成が途中で停止したような場合に大量に出現し、合成を完了させるための損傷乗り越え修復を行ないます。この酵素を欠損する株では、DNAの損傷をひきおこすような薬剤を投与した場合に、突然変異の確率が高まることが知られています。
https://en.wikipedia.org/wiki/DNA_polymerase_IV

DNAポリメラーゼV:

DNAポリメラーゼIVと同様、DNA損傷乗り越え修復を行ないます。IVと共にYファミリーを形成し、古細菌や真核生物にも多くのオルソログが存在する大ファミリーです。Yファミリーの酵素は、忠実度を低くすることによって、鋳型(テンプレート)が損傷を受けてもDNA合成を継続させるのが仕事なのですが、それでも損傷を受けた鋳型に対して、正しい対面ヌクレオチドを選択するに超したことはありません。従って受けた損傷の形に応じて使う酵素を変えて、より正確な複製を行うために種類が増えたのかもしれません。
https://en.wikipedia.org/wiki/DNA_polymerase_V

-----------------------------------------------------------------------

真核生物:

DNAポリメラーゼアルファ(α):

プライメースと複合体を形成して、DNA合成をスタートさせる役割を担っています。プライマーの末端3'OHからDNA鎖を延長していきますが、20ヌクレオチドあるいはそれ以内の鎖を合成したところで、デルタやイプシロンと交代します(3)。エキソヌクレアーゼ活性を持っておらず、校正機能が無いため、デルタやイプシロンほど正確な複製ができません。BファミリーのDNAポリメラーゼです。

DNAポリメラーゼベータ(β):

塩基除去修復に必要とされている酵素です。DNAポリメラーゼラムダやDNAポリメラーゼミューと同じXファミリーに所属します(4)。しかしラムダやミューはベータとは別の役割を果たしているようです(4)。細菌のDNAポリメラーゼXは研究が進んでいないようです。

DNAポリメラーゼガンマ(γ):

ミトコンドリアに存在し、ミトコンドリアのDNA複製に関与すると考えられています(5)。大腸菌のDNAポリメラーゼ I と同じAファミリーに所属しています。ミトコンドリアは活性酸素が多い環境なので、DNAはダメージを受けやすく、この酵素が校正機能を持っていることには大きなメリットがあります。

DNAポリメラーゼデルタ(δ):

DNAを複製および修復するときに用いられます。以前はラギング鎖のみ複製すると考えられていましたが、リーディング鎖の複製も行っているようです(6)。Bファミリーに所属し、校正機能を持っています。

DNAポリメラーゼイプシロン(ε):

DNAを複製および修復するときに用いられます。主にリーディング鎖の複製を行っていると考えられますが、これはデルタで代用できるようです。しかしそれ以外に、2重鎖になっているDNAをほどいてルーズな状態に変化させるヘリケースを活性化する機能があり、これによって複製フォークが形成されるようで、こちらの機能は代替不可だそうです(7)。Bファミリーに所属し、校正機能を持っています。

DNAポリメラーゼ ラムダ(λ)&ミュー(μ):

DNAの2本鎖が両方とも切れたときの修復(非相同末端結合)に使われるようです。また相同組み換えにも使われるようですが、まだ詳しく研究されていないようです(4)。いずれもXファミリーに所属しています。

DNAポリメラーゼ イオタ(ι)、エータ(η)、ゼータ(ζ)、& カッパ(κ)

いずれもこの記事で取り上げたDNA乗り越え修復に関与する酵素です。エータのようにチミンダイマーの対面をきちんとAAに修復できるエラーレスの酵素もあれば、エラーの確率が高い酵素もあります。ゼータはBファミリーですが、他の3つはYファミリーに所属します。

他にも特殊な酵素がいくつかありますが、ここでは述べません。文献(8、9)などを参照してください。

===========================

参照:

1. J. J. WEIGLE, INDUCTION OF MUTATIONS IN A BACTERIAL VIRUS, Proc. Natl. Acad. Sci. USA vol.39, pp.628-636
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1063835/pdf/pnas01592-0060.pdf

2. M.F. Goodman and R. Woodgate, Translesion DNA polymerases., Cold Spring Harbor Perspectives in Biology, No.29, pp.1~20 (2016)
http://cshperspectives.cshlp.org/content/early/2013/07/08/cshperspect.a010363

3. L. Pellegrini, The Pol alpha -primase complex. Subcell Biochem. vol.62, pp. 157-169 (2012)

4. J. Yamtich and J.B. Sweasy, DNA polymerase family X: function, structure, and cellular roles., Biochim Biophys Acta. vol.1804, pp.1136-1150 (2010)
https://www.ncbi.nlm.nih.gov/pubmed/19631767

5. R. Krasich1, W.C. Copeland, DNA polymerases in the mitochondria: A critical review of the evidence. Frontiers in Bioscience, Landmark, 22, pp.692-709 (2017)
https://www.ncbi.nlm.nih.gov/pubmed/27814640

6. R.E. Johnson, R. Klassen, L. Prakash, and S. Prakash, A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands., Mol. Cell. vol. 59, pp.163–175. doi:10.1016/j.molcel.2015.05.038. PMC 4517859Freely accessible. PMID 26145172

7. T. Handa et al., DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast., Mol Biol Cell, vol.23, pp.3240-3253 (2012), doi: 10.1091/mbc.E12-05-0339
https://www.bio.sci.osaka-u.ac.jp/newinfo/info72.html

8. 道津貫太郎、横井雅幸、花岡文雄、立体構造解析から見えてきた損傷乗り越えDNA複製の分子メカニズム. 放射線生物研究 vol. 46,pp. 1~14 (2011)
こちら

9. S. Doublie and K.E. Zahn, Structural insights into eukaryotic DNA replication. Frontiers in Microbiology. vol.5, pp.1~34 (2014)

|

2016年11月30日 (水)

生物学茶話@渋めのダージリンはいかが49: DNA修復1

DNAはヌクレオチドがフォスフォジエステル結合を介して連結されていますが(図1)、このヌクレオチド同士の結合は化学的には非常に安定で、加熱・酸・アルカリなどの条件でも壊れません。ジフェニルアミン法でのDNAの化学的定量の際には過塩素酸の存在下でボイルして分解・染色します(1)。

A

しかし生体内にはDNAを切断・分解する酵素が存在するので安泰とは言えません。また有機塩基は糖鎖やリン酸と比べると化学的に不安定で、加水分解でアミノ基がアンモニアとなってはずれてしまったり、塩基全体が糖からはずれてしまったり、アルキル化・酸化によって構造が変わったりします。これらの化学反応は酵素がなくても進行します。またDNAを合成する際に、間違った塩基(GCまたはATというペアを形成しない)が取り込まれてしまうこともあります。

細胞が本来維持している環境の中でのエラーやダメージ以外にも、外界の放射線や紫外線によって発生するダメージも深刻です。生物は太古の昔から、このようなさまざまな要因によるDNAの損傷を修復するべく知恵をしぼってきました。もちろんDNAの変異が進化をもたらしたことは事実ですが、毎日起きているDNAの損傷は桁違いで、ウィキペディアによると「DNAの損傷は、細胞内における正常な代謝の過程でも1細胞につき1日あたり 50,000~500,000 回の頻度で発生する」(2)となっています。

たった1ヶ所の変異によって、その部分の遺伝子情報によって作られている蛋白質の機能がゼロになったり、発がんの原因になったりすることもあります。ですから生物は様々なDNAの救急システム=DNA損傷修復の機能を持っているわけですが、それ以外にも私たちの体を見てみると、生きている細胞が露出しているのは乳頭くらいで、あとは皮膚表層の死細胞が紫外線から生きている細胞を保護しています。またヒト以外の動物では皮膚に加えて毛皮や甲冑で保護している場合が多くみかけられます。

生物がまだ水中で生活していた頃は、水によって放射線や紫外線が遮蔽されるので、内因的な損傷だけを修復すればよかったのですが、陸に上がったとたんに外界から激しい損傷をうけることになるので、浅瀬で暮らしている時代に十分な準備をしておかないと、上陸は不可能だったでしょう。これは陸地を歩ける足を準備するのと同じくらい重要な段取りだったと思われます。

さて皆さんは昨年(2015年度)のノーベル化学賞を、どんな人が受賞したか覚えているでしょうか? リンダール(1938~)・モドリッチ(1946~)・サンジャール(1946~)の3人です(図2)。

A_14

彼らは皆それぞれ別の様式のDNA修復に関する研究で受賞しました(3)。彼らが発見した3種類のDNA修復は、大腸菌(原核生物)もヒト(真核生物)も、関与する因子の名前こそ違いますが、様式は基本的に同じで、おそらく10億年以上保存されてきたメカニズムだと思われます。生物は深海の熱水噴出口周辺で生まれたと思われますが、細菌はかなり早くから浅い海や地上で生きていたに違いありません。ですから彼らは優秀なDNA修復機構を太古の時代から持っていて、その後長い間海中で生活することになった真核生物も、彼らの業績を引き継いでいたということになります。ですからおそらく現在紫外線や放射線による障害を修復するメカニズムとして復活した機構も、進化の途中では別の目的で使われていた時代もあったのでしょう。

ここではノーベル賞を受賞した3人の科学者達の業績をたどってDNA修復の機構をみていきましょう。まずトマス・リンダールは塩基除去修復(base excision repair)という様式を発見しました(4)。例えばグアニン(G)が酸化されて8-オキソグアニン(G*)に化学変化したとします(図3)。

3a

まずこの異常な部位にグリコシラーゼがやってきて、異常な塩基である8-オキソグアニンと糖の結合を切断して、8-オキソグアニンを遊離させます。そうするとDNAに塩基のない空白部分(APサイト、apurinic apyrimidinic site)ができます(図4)。この状態を認識するAPエンドヌクレアーゼというDNA分解酵素がやってきて、AP部位のDNAを切断します(図4)。

DNAを切断する酵素を大きく分けると、一番端から順次内部に切っていく(鎖を短くしていく)酵素群をエキソヌクレアーゼ(exonuclease)と、鎖の内部を切断する酵素群(APエンドヌクレアーゼ AP endonuclease のように特定の部位だけ切断するものから、非特異的に滅多切りするものまでいろいろあります)があります。前者のエキソヌクレアーゼがAPエンドヌクレアーゼで切断されたDNAの断端をみつけて、ひとつヌクレオチドを切り離します(図4)。このエキソヌクレアーゼはヌクレオチドひとつ分だけしか切りません。

A_3
ヌクレオチドが切り離されると、専門のDNAポリメラーゼ(真核生物だとDNAポリメラーゼベータ)がやってきて、鋳型に対応するヌクレオチドをひとつ 3'OH に結合させます。例によってこれを 5'P と結合させることはできないので、DNAリガーゼがやってきて結合し、元のDNAへの修復が完成します(図4)。

次はアシス・サンジャールですが、彼はヌクレオチド除去修復(nucleotide excision repair)のメカニズムを解明しました(5、6)。彼はトルコでの裕福な医師生活を捨てて米国で勉強をやり直し、テクニシャンからはじめて、朝9時から深夜3時まで働くというハードワークで成功した人物です。

ヌクレオチド除去修復は、主にDNAが紫外線によって損傷を受けた場合に発動します。紫外線がDNAに照射されると、DNAの塩基配列上でチミンが二つ並んでいるところで、チミンダイマーが形成されます(図5)。

A_4

チミンダイマーが形成されると、周辺のDNAにひずみが発生します。これをUvrA+UvrBの複合蛋白質が認識し、ATPのエネルギーを使ってチミンダイマー周辺のDNAを変形させて塩基同士の結合をひきはがします(図6-2)。するとそこにUvrCがやってきて、チミンダイマーの両側でDNAを切断します(図6-3)。切断されるのはチミンダイマーの隣接部位ではなく、多少の余裕をみて数ヌクレオチド離れた場所で切断されます。チミンダイマーを含む単鎖DNAは遊離し、DNAにギャップが形成されます(図6-4)。この比較的広いギャップは、ヘリケースによってDNAポリメラーゼがアクセスできるように立体構造が整形され、真核生物の場合DNAポリメラーゼイプシロン(リーディング鎖の複製を行なう酵素)によってDNA合成が行われ埋められます(図6-5)。最後にDNAリガーゼによってDNAの端部が連結されて修復が完了します(図6-6)。

A_5

ヌクレオチド除去修復に関連した因子が正常に機能しない場合、色素性乾皮症(xeroderma pigmuntosum)という生命に関わる重要な病気が発生することがあります。この病気は遺伝性で、患者さんは太陽に当たると癌が発生する危険性が高いので、一生暗い部屋で、外出するときは皮膚をすべて被うという気の毒な生活をしなければなりません。

最後はモドリッチですが、その前に一つ述べておかなければならないのは、すべての生物がDNAの複製に用いているDNAポリメラーゼは種類も多くありますが、すべて100%正確にG・C、A・Tのルール通りのDNA合成が可能かというとそうではありません。確率は低いですがエラーが発生して、例えば図7のようにGの対面が誤ってTになったとします。このエラーを放置すると、もう一度細胞分裂が起こった場合、Tの対面はAになって、ずっと先の世代まで間違ったDNAが引き継がれることになります。このようなエラーの修復法をモドリッチが解明しました(7、8)。ミスマッチ修復法と呼ばれています。

A_6

ミスマッチが発生した場合、図7-1のようにMutSαというタンパク質がその位置を検出し、結合するとともにATPを使って構造変化を起こしてMutLαと結合します(図7-2)。MutLαはDNAに断点をいれる酵素(エンドヌクレアーゼ)で、ミスマッチの両側にNick(断点)をつくります(図7-3)。次にExo1という断点から5→3の方向に順次DNAを分解していく酵素(エキソヌクレアーゼ)が、もうひとつの断点までDNAを分解しギャップをつくります(図7-4)。真核生物の場合このギャップは主にDNAポリメラーゼデルタがDNA合成を行うことによって埋められます(図7-5)。そして最後はDNAリガーゼが 3'OH と 5'P を連結して修復は完了します。

以上3種類のDNA修復法について述べましたが、DNAの修復法は他にもあるので次回も続けます。

参照:

1)http://www.sci.keio.ac.jp/eduproject/practice/biology/detail.php?eid=00012

2)https://ja.wikipedia.org/wiki/DNA%E4%BF%AE%E5%BE%A9

3)DNA repair – providing chemical stability for life. THE ROYAL SWEDISH ACADEMY OF SCIENCES, 2015
https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2015/popular-chemistryprize2015.pdf

4)Tomas Lindahl, Instability and decay of the primary structure of DNA. Nature vol.362, pp.709-715 (1993)

5)http://www.newsobserver.com/news/local/education/article51568735.html

6)Sancar, A. and Rupp, W. D., A Novel Repair Enzyme: UVRABC Excision Nuclease of Escherichia coli
Cuts a DNA Strand on Both Sides of the Damaged Region, Cell vol. 33, pp. 249–260 (1983)

7)Ravi R. Iyer, Anna Pluciennik, Vickers Burdett, and Paul L. Modrich, DNA Mismatch Repair: Functions and Mechanisms. Chem. Rev., vol. 106,  pp. 302–323 (2006)
http://pubs.acs.org/doi/abs/10.1021/cr0404794

8)Lahue, R. S, Au, K. G. and Modrich, P., DNA Mismatch Correction in a Defined System, Science, vol. 245, pp. 160–164 (1989)

|

2016年11月22日 (火)

生物学茶話@渋めのダージリンはいかが48: 岡崎フラグメント

Okazakireiji_2岡崎令治氏(1930~1975、図1)は20世紀の分子生物学の爆発的進歩に、戦後間もない日本(名古屋大学)で、日本人として最大の貢献を果たした科学者だと思います。広島に原爆が落とされたときに爆心地近傍で被曝されたとのことで、白血病で若くして亡くなったのは残念至極です。

奥様の恒子氏も科学者かつ共同研究者で、「岡崎フラグメントと私」という一文を生命誌ジャーナルに寄稿されています(1)。発見時の状況や苦労した点などを含めて記述されているので、DNAの複製に興味のある方は一読をお勧めします。もう少しアカデミックな記載としては、やはり岡崎恒子氏の「不連続複製機構を紡いだ日々」(2)という文献が、いまは亡き「蛋白質・核酸・酵素」という雑誌のバックナンバーに残されています。

生物は(ウィルスも生物だとすれば)一部のウィルスを除いて、すべて図2のようなレプリケーションフォークを作ってDNAを複製します。ラジオオートグラフィーなどで巨視的に見れば、DNAはY型のレプリケーションフォークを形成しつつ、両鎖が同時に複製されるようにみえるわけです。

そこで図2Aのように複製が行われるのであれば簡単なのですが、ひとつ問題があって、プライマーの 5'P 末端側からDNAを伸ばしていくDNAポリメラーゼがさっぱりみつからないのです。DNAポリメラーゼはどうも 3'OH からしかDNA合成を行えないとしか考えられません。

そこで岡崎らは図2Bのような複製様式を考えて(当時はプライマーの存在はわかっていなかったので、緑の線は後の知識を加えて描いたものです)、1966年に放射性チミジンが1000~2000ヌクレオチドの短いDNAの鎖(後に岡崎フラグメントと呼ばれることになる)に取り込まれることを発表しました(3)。つまり微視的にみれば、片側の鎖は逆方向に短い鎖として複製され、あとでつながるという方式です。

Photo

しかし複製中のDNAを集めて単鎖に変性させると、多量のプライマーや岡崎フラグメントが採取できるかというと、そういうわけにはいきません。プライマーはどんどん分解され、DNAはどんどん接続されるので、無傷のプライマーや岡崎フラグメントは本当にわずかな量がわずかな時間にだけ存在するのです。

ここで救いの神となったのはDNAを接続する酵素であるDNAリガーゼの発見者である C. C. Richardson で、岡崎研にリガーゼが温度感受性となっているT4ファージの株をプレゼントしてくれたのです。その株で実験してみると、予想通りリガーゼが働かない高温条件だと、じゃんじゃん岡崎フラグメントが発生し、温度を下げるとそれらはつながることが証明されました(4)。岡崎らはさらに両鎖とも 5'→3' 方向に鎖の伸長が進むことを示しました(5)。

あとひとつ解決しなければならないことは、最初に不連続複製のモデルを提出した頃にはわかっていなかったプライマーの問題なのですが、ここにいきつくまでに令治氏は他界し、恒子氏率いるグループにに課題は残されました。

1979年に至ってようやく恒子氏のグループはプライマーRNAの構造を解明し(6)、図3のようなDNA不連続複製の全貌が明らかとなりました。すなわちリーディング鎖ではDNAの複製は連続的に行われ、ラギング鎖では逐次プライマーと岡崎フラグメント(a, b, c 等)が形成される逆方向の不連続複製が行われるということになりました。

Photo_2

DNAの2本の鎖はそれぞれ別の様式で複製されるため、3’末端から複製される鎖はリーディング鎖、5’末端から複製される鎖はラギング鎖と名付けられました。ラギング鎖においては、リーディング鎖とはことなり、逆方向から岡崎フラグメント(a, b , c) をつくりながら複製が行われます。逆方向とは言っても、鋳型(テンプレート)が逆方向なわけで、DNAを合成する方向としてはどちらも 3'OH を起点として5→3方向に進んでいるのです。

図3の状態からさらにプライマー(緑)を取り去り、できたギャップを埋め、DNA鎖を接続するという作業が必要になります。これは概略図4のように行われます。図4におけるDNAの塩基配列は説明のために記載した任意のものであり、実際の配列とは関係ありません。

Photo_3

1.岡崎フラグメント(矢印青)がDNAポリメラーゼによって伸長されるとプライマー(緑)の 5'P 側とぶつかります。DNAポリメラーゼは伸長DNA端の 3'OH とこの P を結合させることはできないので、ニック(切れ目)を生じたままそこで反応を停止します。

2.RNase HなどによってプライマーRNAが分解されますが、RNase Hはリボースとリボースの結合しか切れないので、リボースとデオキシリボースが結合している最後の1ヌクレオチド(緑のドット)は処理できません。

3.最後の1ヌクレオチドは 5'P 側からリボースとデオキシリボースの結合を切るヌクレアーゼが作用して、もとプライマーがあった部分が完全なギャップとなります。

4.このギャップはDNAポリメラーゼによって埋められますが(哺乳類の場合DNAポリメラーゼデルタ)、DNAポリメラーゼは 3'OH を認識してそこにヌクレオチドをくっつけていく酵素なので、赤矢印右端の 3'OH を既存の 5'P と接続することはできません。したがってニックができることになります。

5.このニックはDNAリガーゼ(英語ではライゲース)によって接続され、岡崎フラグメントは解消されて、ラギング鎖の新生DNAは連結されます。

6.そしてプライメースによってプライマーがつくられ、そこからDNAが合成され、1のステップにもどります。この1~6のステップを繰り返すことによって、ラギング鎖のDNA複製が行われます。

私はこの記事を書いていて、これまで岡崎令治氏は早逝されたのでノーベル賞を受賞できなかったと思っていたのですが、いろいろ難癖をつけられた岡崎フラグメントをさまざまな実験で世に認めさせた功績から言えば、岡崎恒子氏の貢献が大きいと思いました。すなわち岡崎恒子氏(および発見論文のファーストオーサーである坂部貴和子氏)こそ受賞すべき人なのではないでしょうか。

そしてもうひとつここでふれておきたいことがあります。DNAリガーゼは1967年に  Bernard Weiss と Charles Clifton Richardson によって発見された、DNAの断点(ニック)を接続したり、DNA同士を連結させる酵素です。 リチャードソンは現在もハーバード大学に研究室を構えているようですが、ワイスの消息は追跡できませんでした。リタイアしたのかもしれません。米国版も含めてウィキペディアへの記載もありませんでした。DNAを合成する酵素、DNAを切断する酵素については数人がノーベル賞を受賞していますが、遺伝子工学で頻繁に用いられるDNAを結合させる酵素=DNAリガーゼについては候補にもあがらないというのは不可解です。

参照:

1)「岡崎フラグメントと私」岡崎恒子、生命誌ジャーナル vol.9、no.3、pp.24-29 (2001)
http://brh.co.jp/s_library/interview/32/

2)「不連続複製機構を紡いだ日々」岡崎恒子、蛋白質核酸酵素 vol.48, no.6, pp.718-726 (2003)
http://lifesciencedb.jp/dbsearch/Literature/get_pne_cgpdf.php?year=2003&number=4806&file=usD0LKftXwfjSwF9ietppw==

3)K.Sakabe and R. Okazaki, A unique property of the replicating region of chromosomal DNA. Biochim Biophys Acta. vol.129, pp.651-654 (1966)

4)R Okazaki, T Okazaki, K Sakabe, K Sugimoto, and A Sugino, Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc. Natl. Acad. Sci. USA, vol.59, pp.598-605 (1968)

5)T. Okazaki and R. Okazaki, Mechanism of DNA chain growth, IV. Direction of synthesis of T4 short DNA chains as revealed by exonuleolytic degradation. Proc. Natl. Acad. Sci. USA, vol.64, pp.1242-1248 (1969)

6)T. Okazaki et al., Structure and Metabolism of the RNA Primer in the Discontinuous Replication of Prokaryotic DNA. Cold Spring Harb Symp

7)B Weiss and C C Richardson, Enzymatic breakage and joining of deoxyribonucleic acid, I. Repair of single-strand breaks in DNA by an enzyme system from Escherichia coli infected with T4 bacteriophage. Proc. Natl. Acad. Sci. USA, vol.57, pp.1021–1028 (1967)

|

2016年11月18日 (金)

生物学茶話@渋めのダージリンはいかが47: DNA複製機構

「DNAの半保存的複製」のところで、1956年にアーサー・コーンバーグがDNAの複製に関わる酵素DNAポリメラーゼを発見したことを述べました。世紀の大発見で、早くも1959年には彼にノーベル賞が授与されたくらいです。ところがそれから10年も経った1969年、DNAポリメラーゼ活性を失った大腸菌の変異株を分離したという驚天動地の報告が Nature 誌に発表されました(1)。これはアーサー・コーンバーグの酵素がなくても大腸菌は増殖できることを意味します。大ピンチに陥ったアーサー・コーンバーグでしたが、その後始末は息子のトーマス・コーンバーグ(1948~)や、共同研究者のマルコム・ゲフター、広田幸敬(1930~1986) らによって迅速に行われました。

ゲフターとトーマス・コーンバーグはすぐに、大腸菌抽出液中にアーサーが発見した酵素( pol I ) 以外に2種類のDNA合成酵素があることを発見し、それらを精製して pol II, pol III と命名しました。当時広田はDNA合成に関する温度感受性変異株を多数分離しており、ゲフターとトーマスは広田との共同研究によって、それらの温度感受性変異株と pol I のダブルミュータントを解析しました。そうすると pol II はどの株でも正常でしたが、ある株で pol III が強い温度感受性を示しました。この株では pol III が高温によって変性してしまたために、DNAが複製できなくなったのです(2)。このことは pol III がDNA複製を担う酵素であることを強く示唆しましたが、この酵素単独では複製能力が低く、DNAの複製はそんなに簡単にいくものではない、すなわち未知因子がかかわっていることも示唆されました。

閑話休題、トーマス・コーンバーグはチェリストでもあり、著名なピアニストのエマニュエル・アックスとベートーヴェンのチェロソナタを見事に演奏している様子が YouTube にアップされています(3)。広田幸敬先生の講義は聴いたことがあります。気さくで親しみやすい方との印象でした。「大腸菌の性因子に関する研究が、ちょっとした差でジャコブの手柄になって非常に残念だった」というようなことを話されていたことを記憶しています。若くして亡くなられたのは誠に残念でした。

さて、ではDNA複製にどんな因子がかかわっているのでしょうか? この後アーサー・コーンバーグ研究室のすさまじい逆襲がはじまりました。多くの有能な若手研究者や学生を集めて、毎月複数の論文が出版されるほどの精力的な研究が進められました。しかもジェラルド・ハーウィッツの研究室も小うるさく参戦してきました。

彼らはまず試験管内無細胞系のDNA合成システムを完成させました。温度感受性変異株は高温下ではこのシステムでも当然DNA合成はできません。これに正常株の抽出液を加えるとDNA合成は回復します。そこで正常株の抽出液をクロマトグラフィーなどによって幾つかの画分に分け、どの画分を加えると回復するか調べます(相補性テスト)。これを繰り返すことによって画分に含まれる成分は減少し、最終的にある精製された1種のタンパク質を加えると回復するということが判明します。別の株で同様な操作を行うと、また別種のDNA合成にかかわるタンパク質が精製されます。このような相補性テストで精製されたタンパク質はそれぞれ DnaX (X は任意のアルファベット)という名前が付けられ、それぞれの機能が解明されていきました。

なぜそんなに多くの因子が必要かということを考える上で、とりあえずDNAポリメラーゼができることを図1に示します。DNAポリメラーゼは2重鎖と1重鎖の両方をの部分を持つDNAにしかアクセスできません。しかも1重鎖(プライマー)の 3'OH が端でない方に露出している必要があります。プライマーの3'OH末端、 鋳型DNA、そしてデオキシヌクレオシド3リン酸が存在したとき、DNAポリメラーゼはデオキシヌクレオシド3リン酸からピロリン酸を切り離し、鋳型DNAに適合したデオキシヌクレオシド1リン酸の5'Pを3'OH末端に結合させて、DNAの鎖長をのばすことができます。これ以外のことはできません。鎖長を連続的に延長させるためには、もちろん dATP、dTTP、dGTP、dCTP の4種のデオキシヌクレオシド3リン酸が必要です。

Photo_4

ですから2重鎖だけのDNAや1重鎖だけのDNAがあってもこの酵素はDNA合成はできません。実際細胞内にはそのようなDNAがまま存在するので(たとえば紫外線でDNAが切れた場合とか、ウィルスが感染した場合とか)、意味のない、あるいは有害なDNAをどんどん増やさないために、DNAポリメラーゼの機能が厳しく制約されていることには生理的意義があります。ただDNAの損傷修復に用いられるDNAポリメラーゼの中には、そのような制約を受けないものもあるようです。

図1ではDNAになっていますが、プライマーは通常RNAです。ですからプライマーをつくるプライメースはRNAポリメラーゼの1種です。RNAポリメラーゼは一般的にプライマーを必要としない酵素です。

図1から想像できるように、DNAの複製は DnaX タンパク質群やさまざまな酵素などのお膳立てや後始末があって、はじめて可能になるわけです。コーンバーグらが研究を続けていくと、pol III 以外の多くの種類のタンパク質や酵素がDNA合成にかかわっていることがわかってきました。DNAポリメラーゼIII (pol III) 自体も、現在では多くのタンパク質が結合したDNAポリメラーゼⅢホロ酵素のかたちで、DNA複製を実行することがわかっています(図2 ウィキペディアより)。図2で pol III (コア酵素)は α と表示されています。

800pxdna_polymerase_

DNAは通常2重らせん構造をとっているので、上記したようにDNAポリメラーゼがアクセスすることは不可能です。ですからまずDNAの鎖をほどいて1本鎖の塩基側を露出させ、かつ酵素がアクセスするに十分なスペースをつくらなければいけません。

DNAはある決まった位置から複製が開始されます。開始位置領域には oriC という名前がつけられ、そこに大腸菌の場合8つの DnaA タンパク質の結合部位(TTATCCACAなど)が存在し、ここに DnaA が結合することによって、周辺に存在するATリッチな部分の2重ラセンをほどき、DnaB と DnaC がアクセスできるようにします。DnaB (helicase) と DnaC は協力してDNAの単鎖構造を安定化させ、DNA複製のお膳立てをします(参照5、図3)。

Photo_5

こうして作られたアクセス可能な部位にDNA複製酵素がやってきて、すぐに複製を開始するかというと、そのような生物は見つかっていなくて、ほとんどの生物ではまずプライマーという短いRNA(生物によってはDNA)が作成され、そこを起点としてようやくDNA複製が開始されます(図1)。

大腸菌の場合、まず塩基の数にして11±1のRNAフラグメント(プライマー)がプライメース(primase)という1種のRNAポリメラーゼによって作成され、その3’末からDNA複製がはじまります。

プライマーのRNAフラグメントは後に別の酵素によって取り除かれます。この別の酵素というのが RNase H やアーサー・コーンバーグが発見したDNAポリメラーゼ I(pol I)だとされています。このときには pol I はRNAを分解する酵素としても働くという2面性を持った特異な酵素です。そうして取り除かれたあとの空白をDNAで埋め戻し、最後に残された5'Pと3'OHの断点をDNAリガーゼ(DNA ligase)で接続してようやくDNA複製は完了します(5)。DNAの合成はDNA複製のときだけではなく、DNAがダメージをうけたときにも行われます。アーサー・コーンバーグの酵素はそのような際にはDNAポリメラーゼとしても作用します。

大腸菌の場合ゲノムはサーキュラーで複製開始点はひとつですが(図3)、真核生物ではゲノムはリニアで多数の複製開始点があります(図4)。酵母で複製開始点を同定したデータをみますと、一定間隔であるわけでもないし、いっせいに複製が開始されるわけでもないようです(6)。DNA複製が行われている部分のことを replication bubble とか replication eye などと呼ぶことがあります。

Photo_6

参照:

1)Paul de Lucia, John Cairns, Isolation of an E.Coli strain with a mutation affecting DNA polymerase. Nature vol.224, pp.1164-1166 (1969)

2)Malcolm L. Gefter, Yukinori Hirota, Thomas Kornberg, James A. Wechsler, and C. Barnoux. Analysis of DNA Polymerases II and III in Mutants of Escherichia coli Thermosensitive for DNA Synthesis. Proc Natl Acad Sci U S A. vol.68, pp.3150-3153 (1971)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC389610/

3)https://www.youtube.com/watch?v=81rk7_I4-zY

4)http://www.sc.fukuoka-u.ac.jp/~bc1/Biochem/replicat.htm

5)Molecular Biology of the Gene. 7th edn., J.D.Watson et al., Cold Spring Harbor Laboratory Press (2008)

6)大阪大学大学院升方研究室 研究紹介
http://www.bio.sci.osaka-u.ac.jp/bio_web/lab_page/masukata/research/index.html

|

2016年11月13日 (日)

生物学茶話@渋めのダージリンはいかが46: リボソーム

mRNA、tRNA、リボソームなどは生命現象を維持するために必須のアイテムであり、細菌からヒトまですべての生物が持っているものです。これらを使ってタンパク質合成を行うというやり方をはずれた生物は1種もみつかっていないので、地球上の生命体はすべて同じルーツという考え方には説得力があります。

リボソームの話に入る前に、生化学者にとっては今でも大切な細胞分画法について述べましょう。真核生物の細胞内には核・ミトコンドリア・葉緑体・ミクロソーム・リボソーム・リソソーム・細胞骨格など不溶性の構造体が数多く含まれます。

Douncehomogenizerwhe_2細胞をまずホモジェナイザー(図1、Wheaton  社のサイトより)を使って壊します。図1のホモジェナイザーは先端のテフロン部分が円柱状になっており、ダウンス型といいますが、その他先端のテフロンがボール状のポッター型もあります。

ガラス容器のなかに細胞懸濁液を入れ、ステンレス棒をテフロンブロックに埋め込んだベスルを、回転させたり上下にピストン運動させたりして細胞を壊します。

ガラス容器とテフロンの間にわずかな隙間があり、細胞のサイズや堅さに応じて、その隙間の幅を変えて使います。ガラスとテフロンの膨張率は異なるので、通常4℃で隙間の幅は設定されています。

ホモジェナイザーで作成した細胞破壊液を遠心機にかけて、沈殿と上清にわけ、上清をさらに強い遠心力を使って沈殿と上清にわけるというやりかたで、さまざまな細胞内構造体を分離するのが細胞分画法で、アルベール・クロード(1899~1983)が創始した方法です(図2、参照1)。

Photo_2

遠心力の強さ(+遠心時間の長さ)によって、沈殿してくる細胞内構造体は変わります。上記の方法では、段階的に遠心力を強めて異なる細胞内構造体を採取できるようにしています。

3georgepaladero0331_2リボソームは細胞分画法で得たミクロソーム画分にあります。

ジョージ・パラディー(1912~2008)は1955年に出版した論文で、電子顕微鏡を用いてリボソームを観察し、それがミクロソーム(エンドプラズミック・レティキュラム=ER)に結合していることを報告しました(2)。

パラディーはルーマニア人ですが、米国ロックフェラー研究所のアルバート・クロード研究室のポストドクとなり、クロードが開発した「生物を電子顕微鏡で観察する手法」を発展させました。母国では現在でも切手になっています(図3)。

アルベール・クロードとジョージ・パラディーの師弟2人は、リソソームの発見者であるクリスチャン・ド・デューブと共に1974年度のノーベル医学生理学賞を受賞しました。

リボソームはタンパク質を製造する工場であり、巨大なRNAと多数のタンパク質の集合体です。直径が20~30nmくらいあるので、容易に電子顕微鏡で粒子として見ることができます(2)。

リボソームは分子としては非常に巨大で、例えば真核生物では分子量420万というような値になるので、種類の違いやサブユニットの区別のためには通常沈降係数で表記されます。

沈降係数S=Vt(沈降速度)/負荷された加速度、つまり遠心力を強くかけたときに沈降速度がどの程度増加するかという単位がS(スヴェドベリ)ということになります。細菌と真核生物のリボソームはいずれも鏡餅のように2つの分子集合体からなりますが、サイズや構造は微妙に異なっています(図4)。

Photo_3

例えば真核生物の60Sサブユニットは5.8S、5S、28Sの3種類のリボソームRNAと49種類のタンパク質で構成されています。他のサブユニットもすべてリボソームRNAとタンパク質の複合体です。

ウィキペディアにでている立体構造の図などを見るとわかるように(3)、リボソームはリボソームRNA(rRNA)で構成された骨格に、さまざまなタンパク質が結合した複合体で、そのタンパク質の種類の多さからみても非常に複雑なメカニズムで稼働していることが想像されます。

しかもタンパク質合成にかかわっているタンパク質はリボソームを構成しているもののみではなく、フリーのものもあります。分子生物学の教科書「Molecular  Biology of the Gene」 Cold Spring Harbor Press  」でも、リボソームにおけるタンパク質合成のメカニズムについて数十ページを費やしているくらい複雑で、ここですべて説明するのは無謀です。詳しく勉強したい方は上記の教科書を読むか、無料の論文なら参照(4)を推奨します。

キーポイントだけ述べますと、リボソームはmRNAをトラップするとともに、tRNAをトラップする2つのサイトがあります(図5)。

Photo_4

Pサイトにはポリペプチドを結合した tRNA がつながれています。Aサイトにはアミノ酸をひとつ持った tRNA がやってきて、Pサイトのポリペプチドの根元にあるCOOを攻撃して、ここにペプチド結合(CONH)を作ります(5図左)。

その結果ポリペプチドはAサイトの tRNA に移行し、Pサイトの tRNA はフリーになってリボソームから離れます(5図右)。すなわちポリペプチドの長さは1アミノ酸分だけ長くなります。そしてこの延長されたポリペプチドを持ったAサイトの tRNA はPサイトに移行し、mRNAも1コドン分移動します。そしてまたAサイトに新たな tRNA がトラップされます。

この反応をアニメ化したものがウィキペディア「リボソーム」の項目の最後にあります(5)。ちょっとコマ送りが早いですが、よくみるとポリペプチドの合成の様子をわかりやすく表現しています。

参照:

1)Albert Claude, THE CONSTITUTION OF PROTOPLASM. Science vol.97, pp.451-456 (1943)
https://www.ganino.com/games/Science/science%20magazine%201940-1957/root/data/Science_1940-1957/pdf/1943_v097_n2525/p2525_0451.pdf

2)George E. Palade, SMALL PARTICULATE COMPONENT OF THE CYTOPLASM. J.Biophysc. and Biochem. Cytol. vol.1, pp.59-68 (1955)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223592/pdf/59.pdf

3)https://en.wikipedia.org/wiki/Ribosome

4)Dmitri Graifer and Galina Karpova, Interaction of tRNA with Eukaryotic Ribosome. Int J Mol Sci. vol.16 pp.7173?7194 (2015)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425011/

5)https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%9C%E3%82%BD%E3%83%BC%E3%83%A0

|

2016年11月10日 (木)

生物学茶話@渋めのダージリンはいかが45: トランスファーRNA(tRNA)

DNAが遺伝情報の本体で、それが mRNA として読み取られるというところまでとりあえずきました。では mRNA が持っている情報は、どのようにタンパク質とつながっているのでしょうか。タンパク質はアミノ酸が連結したものなので、合成されるときにどのような順にアミノ酸が連結されるのかが重要です。この mRNA が持っている順番の情報を、どうやってアミノ酸が連結する順番として反映するのかというのが難題で、これを解決するために生物はトランスファーRNA (tRNA)というギミックを生み出しました。DNAからmRNAをつくるプロセスを転写(transcription)、mRNAからタンパク質をつくるプロセスを翻訳(translation)といいます。

Paulzamecnik1966_2特定のアミノ酸と結合し、タンパク質合成工場であるリボソームまでアミノ酸を運んで、mRNA に指定された順にリボソームに送り込む物質が存在しなければ翻訳を行うことはできません。

ポール・ザメクニック(Paul Zamecnik 1912~2009、 図1)らは、ラットの肝臓を使って試験管内無細胞系でタンパク質合成が行われる実験系を開発し、ATPの存在下で、各アミノ酸と結合する可溶性のRNAが存在することを証明しました(1)。この可溶性RNAが現在トランスファーRNA(tRNA)として知られているものです。

このような重要な発見であるにもかかわらず、mRNAの場合と同様、tRNA の発見者にもノーベル賞は授与されませんでした。少なくとも、この研究の中心となったポール・ザメクニックには授与されるべきだったと思うのは私だけではありません(2)。

とはいえ tRNA の構造を解明したロバート・ホリー(図2)には1968年にノーベル賞が授与されています。ロバート・ホリーらが研究を始めた頃には、すでにザメクニックらによって、各アミノ酸は tRNA 末端のアデノシンに結合することがわかっていたので、構造が異なる tRNA がアミノ酸の種類だけ存在すると想像できました。つまりアラニンにはアラニン専用の tRNA、リジンにはリジン専用の tRNA 等々というわけです。

Robert_holleyホリーのグループはクレイグの向流分配法(3)を4年がかりで最適化することによって、さまざまな tRNA を分離することに成功しました。彼らは特にうまく分離できたアラニン-tRNAをまず分析しました。140kgのパン酵母から1gの精製されたアラニン-tRNAを得るのに3年を要しました。1961年には、この tRNA は約80個のヌクレオチドが連結した単鎖であることがわかりました(4)。ホリーらの仕事は、本格的な構造決定作業の前に、7年もの準備作業を要したわけで、その間の予算を維持するのが大変だったことでしょう。

彼らは精製したアラニン-tRNAをRNA分解酵素で切断してフラグメントをつくり、カラムクロマトグラフィーで各フラグメントを分離して、それぞれの構造を決定しました。そしてついに1965年にアラニン-tRNAの全構造を解明しました(5、図3)。すでに発表されいたRNAの2次構造に関する FRESCO-ALBERTS-DOTY モデルを参考にアラニン-tRNAの2次構造を描くと、美しいクローバーリーフ状の構造になりました。そしてその中央の葉の先端の3つの

塩基がmRNAに対応することもわかりました。この3つの塩基はmRNAが指定するコドンの裏側の配列であり、アンチコドンと呼びます。その他のアミノ酸に対応する tRNA の構造も、その後次々と同様な方法で解明されました。

Photo

以前にDNAは2重らせん構造をとるのに対して、RNAは基本的に単鎖と書きましたが、短い2重鎖をつくることは可能で、特に tRNA の場合には顕著です。これによって tRNA は複雑な構造をとることが可能です。トランスファーRNAの一般的な構造を図4に示します。上方にアミノ酸の結合部位があります。下方の赤の部分のアンチコドンに対応したアミノ酸が結合します。おおざっぱには、2重鎖構造をとっている4本の幹と、単鎖の3つのループ、そして短い枝のような部分(ガンマ)からできています。

Photo_4

左側にDループ、右側にT(またはTΨC=TプサイC)ループがあり、これらの構造の違いによって別々の酵素がそれぞれの tRNA にアクセスし、適切なアミノ酸を結合させることができます。下方のAループ(アンチコドンアーム)にはアンチコドン領域があり、ここで mRNA のコドンを認識します。ここでもう一度コドンのリストを見て下さい(図5)。

Mainqimg8a46170563d

DNA・mRNAは3つの塩基でアミノ酸を指定しており、4x4x4=64種類のアミノ酸に対応できますが、アミノ酸は20種類ほどしかなく、複数のコドンがひとつのアミノ酸に対応するようにせざるを得ません。

たとえばフェニルアラニン(Phe)の場合、UUUとUUCが対応します。ロイシン(Leu)の場合、CUU・CUC・CUA・CUG の4つのコドンが対応します。なかにはメチオニン(Met)やトリプトファン(Trp)のように、対応するコドンがひとつしかないものもあります。

全体をみていくと、最初の2つの塩基は各アミノ酸に特異的であり、3つめはしばりがゆるくなっていることがわかります。コドンのなかにはアミノ酸を指定しないものが3つあり(UAA・UAG・UGA)、これらはここでタンパク質合成を停止せよというシグナルのストップコドンです。

図6はAループの先端のアンチコドン領域を示したものです。アンチコドンを形成する3つの塩基のうち2つは厳密なワトソン・クリック型の対応(AU・GC)なのですが、残りのひとつ(アンチコドン側からいえば1番目の塩基)はルーズになっており、たとえばイノシン(I)はA・U・G・Cのどれとも塩基対を形成できるので、GUA・GUU・GUG・GUCのコドンに対して、アンチコドンはIACの1種類で対応し、バリンが指定されます。

このように生物はイノシンを用いるなどの巧妙な方法で厳密なワトソン・クリック型の塩基対を回避し、64種(ストップコドンを除けば61種)のコドンで20種のアミノ酸を指定するという難題を解決しているのです。

Photo_5

酵母のフェニルアラニン tRNAの塩基配列をウィキペディアからお借りしました(図7)。tRNAはmRNAのようにA・U・G・Cだけからできているわけではなく、その他のいろいろな塩基を含んでいます。mはメチル化されていることを示します。Ψはシュードウリジンで、ウリジンとは構造が異なります(図8)。たとえばフェニルアラニン tRNAはバリン tRNAと間違えられると困るので、酵素が認識しやすいようにさまざまな修飾がほどこされていると考えられます。

620pxtrnaphe_yeast_

Graphic1_large

tRNAの 3'OH側の端は必ずCCAという塩基配列になっています(図7)。この一番端のAがついているリボースにアミノ酸が結合するわけです。ここにアミノ酸を結合させるためには、まずアミノ酸をアミノアシルAMPにしなければなりません。すなわちアミノ酸 NH2-R-COOH を NH2-R-CO-AMPという形にしなければなりません(アシル化とはR-COをくっつけること この場合Rはアミノ酸の種類の数だけ存在)。この形になると以下の反応が可能となります。

NH2-R-CO-AMP+tRNA → NH2-R-CO-tRNA+AMP 
(アミノ酸-AMP + tRNA = アミノ酸-tRNA + AMP)

この反応を触媒する酵素は、最低でもアミノ酸の種類の数だけ(20種類以上)存在し、例えばアラニンtRNAには必ずアラニンを結合させるようになっています。この酵素はアミノアシルtRNA合成酵素と呼ばれますが、核酸の持っている情報を使ってタンパク質を合成するというのはすべての生物がやっていることなので、どの生物でも各アミノ酸に対応して最低20種類はもっていなくてはいけません。これは無生物から生物が誕生する上で大きな壁で、ここを突破してはじめて生物なるものが登場し得たわけです。

こうしてできたアミノ酸-tRNAがタンパク質製造工場であるリボソームに運ばれて、タンパク質が合成されます。その状況はウィキペディアでうまく表現されていたので、図9にコピペしておきます。リボソームについてはあらためて述べますが、とりあえずtRNA(図ではTRNAと表記されています)がアミノ酸を運んできて、mRNAの指示通りの順にリボソーム内でアミノ酸を結合させ、アミノ酸を手放したtRNAはまたリボソームから去って行くというメカニズムだと理解できます。

Peptide_syn

tRNAの3D立体構造については、例えば文献6などに美しいイラストが掲載されています。

参照:

1)Mahlon B. Hoagland, Mary Louise, Stephenson, Jesse F. Scott, Liselotte I. Hecht, and Paul C. Zamecnik., A SOLUBLE RIBONUCLEIC ACID

INTERMEDIATE IN PROTEIN SYNTHESIS., J. Biol. Chem. vol.231, pp.241-257 (1958)

2)Thomas H. Maugh II, Dr.Paul Zamecnik dies at 96; scientist made two major discoveries.
http://www.latimes.com/nation/la-me-paul-zamecnik19-2009nov19-story.html

3)https://wikimatome.org/wiki/%E5%90%91%E6%B5%81%E5%88%86%E9%85%8D

4)Holley R.W., Apgar J., Merrill S.H., Zubkoff P.L. Nucleotide and oligonucleotide compositions of the alanine-, valine-, and tyrosine-acceptor

soluble ribonucleic acids of yeast. J. Am. Chem. Soc., vol.83:pp.4861~4862 (1961)
http://pubs.acs.org/doi/abs/10.1021/ja01484a040)

5)HOLLEY RW, APGAR J, EVERETT GA, MADISON JT, MARQUISEE
M, MERRILL SH, PENSWICK JR, ZAMIR A. STRUCTURE OF A RIBONUCLEIC ACID. Science, vol.147, pp.1462-1465 (1965)

6)Masahiro Naganuma, Shun-ichi Sekine, Yeeting Esther Chong, Min Guo, Xiang-Lei Yang, Howard Gamper, Ya-Ming Hou, Paul Schimmel, and

Shigeyuki Yokoyama. "The selective tRNA aminoacylation mechanism based on a single G・U pair". Nature, 2014, doi:10.1038/nature13440
http://www.riken.jp/pr/press/2014/20140623_1/



|

2016年11月 6日 (日)

生物学茶話@渋めのダージリンはいかが44: メッセンジャーRNA(mRNA)

1aa1956年にエリオット・ヴォルキンとローレンス・アストラハン(Elliot Volkin and Lawrence Astrachan)は興味深い実験を行いました。

彼らによると、T2ファージを大腸菌に感染させたときに放射性のリンをとりこませて、その後RNAを分析すると、大部分のRNAには取り込まれないが、一部のRNAには顕著に取り込まれるという結果になりました(1)。

その後彼らは研究を進めて、このリン酸をとりこんだRNAの寿命は極めて短く、かつファージのDNAと極めて塩基組成が似ていることを確認しました。

野村眞康らはこのRNAがタンパク質製造工場の一部であるリボソームRNAやアミノ酸を運ぶトランスファーRNAとはサイズが異なり、マグネシウム濃度が高い場合はリボソームに結合しているが、マグネシウム濃度が低い場合は解離することを発見しました(2)。

シドニー・ブレナー(1927~)とフランソワ・ジャコブ( 1920~2013)(図1)らは大腸菌を15Nと13Cの重い元素からなる培地で培養し、ファージに感染させてすぐ、14Nと12Cの軽い元素からなる培地に移しました。そうして作られたRNAを超遠心分析装置で調べました。そうすると半減期が16分で、軽い元素からなる新種のRNAが合成され、これは重い元素からなる安定なRNAが含まれるリボソームに結合することがわかりました。これこそがメッセンジャーRNA(mRNA)だったわけです(3)。

共同研究者のメセルソンはこの実験を行うために13Cのガスをロシア(当時はソ連)からシビアな交渉を経て取り寄せ、炭酸ガスに変換したあと藻類に吸収させて、光合成によって大腸菌の培地に入れる素材を作ったそうです(4)。

この実験で、メッセンジャーRNAの存在を証明したことは非常に重要な研究だと思いますが、なぜかブレナーとジャコブは別件でノーベル賞を受賞し、メセルソンに至っては、すでに述べたメセルソン-スタールの実験でDNAの半保存的複製を証明したばかりか、メッセンジャーRNAの存在を証明したのにノーベル賞をもらえなかったという気の毒な運命でした。

DNAに含まれる有機塩基A・G・C・Tは、T・C・G・Aという新たなDNAの鋳型になりますが、同時にU・C・G・AというmRNAの鋳型にもなり得ます。チミン(T)とウラシル(U)は5の位置にメチル基がついているかついていないかだけの違いです(図2)。

2aa

DNAとmRNAにはもうひとつ違いがあって、それは前者の骨格となる糖はデオキシリボースであり、後者はリボースであるということです。2の位置がHかOHかという違いです(図3 青丸がDNAに含まれるデオキシリボース2の位置のH、赤丸がmRNAに含まれるリボース2の位置のOH)。ウラシルはチミンより不安定、リボースはデオキシリボースより不安定という化学的特性があります。

DNAが世代にわたって安定であるべきなのに対して、mRNAはDNAからその時に必要な情報を読み取るためのツールなわけですから、用が済めばすみやかに消滅することが望ましいのです。

シトシンはときどきウラシルに変わってしまうことがあって、もしDNAの成分にウラシルがもともと含まれているとすると、DNAを修復するシステムがシトシンから変わったウラシルなのか、もとからあるウラシルなのか判別できず困ってしまいます。DNAにはウラシルがないと決まっていれば、問答無用にウラシルを除去してシトシンに変えれば良いのですから、それは可能です。このこともウラシルがDNAに含まれないことの理由と考えられます。

3aa

DNAは特別な場合を除いて二重らせん構造をとっていますが、mRNAは上記のような構造上の違いで通常一重鎖となっています。mRNAが二重鎖になってしまうとリボソームに結合してタンパク質を合成することができなくなるので、一重鎖であることは重要です。

DNA → mRNA →  (リボソーム&トランスファーRNAと連携作業) → タンパク質

という基本的な情報の流れについての図式を描くことができます。後に詳述しますが、リボソームはタンパク質合成工場、トランスファーRNA(tRNA)はアミノ酸を運ぶ運搬体、mRNAはDNAからの情報の運搬体と、とりあえず理解しておいてください。

DNAがDNAポリメラーゼという酵素によって複製されるように、mRNAはRNAポリメラーゼという酵素によってDNAから読み取られます。このことを転写(トランスクリプション)といいます。その状況を図4に示しました。

DNAの二重らせんの一部がほどけて、そこからmRNAのリボンが伸びてくるというイメージです。伸びたmRNAのリボンはリボソームと結合してタンパク質合成に利用されます。細菌の場合はそうなのですが、真核生物の場合、mRNAは核で加工された後、細胞質に送り出され、細胞質でリボソームと結合してタンパク質合成を行います。


4aa

図4は見てきたような話なのですが、1970年になって本当にそのような画像が電子顕微鏡によってキャッチされました(参照5、図5)。DNAの電子顕微鏡写真は特殊な方法によって撮影されますが、開発した Miller Jr らの業績は素晴らしいと思います。

5aa

これはまた後に出てきますが、DNAのすべてが遺伝子の情報で隙間無く満たされているわけではありません。実際には 中間部分-遺伝子-中間部分ー遺伝子という構造になっています。mRNAは遺伝子の部分にしか対応していないので、DNAのすべての部分に対応した mRNAが存在するわけではありません。しかし中間部分には遺伝子の発現を制御する領域などが含まれており、重要な部分も存在します。

参照:

1)Volkin E and Astrachan L. Intracellular distribution of labeled ribonucleic acid after phage infection of Escherichia coli. Virology Volume 2, Issue 4, pp. 433-437 (1956)

2)Nomura M., Hall B.D. and Spiegelman S. Characterization of RNA synthesized in Escherichia coli after bacteriophage T2 infection.Journal of Molecular Biology vol.2(5), pp.306-326 (1960)

3)Brenner, S., Jacob, F., & Meselson, M. An Unstable Intermediate Carrying Information from Genes to Ribosomes for Protein Synthesis. Nature 190, pp.576-581 (1961).

4)http://sickpapes.tumblr.com/post/51016848003/brenner-s-jacob-f-and-meselson-m-1961-an

5)O. L. Miller Jr., Barbara A. Hamkalo, C. A. Thomas Jr., Visualization of Bacterial Genes in Action. Science, Vol. 169, Issue 3943, pp. 392-395 (1970)
http://science.sciencemag.org/content/169/3943/392.full.pdf+html

|

2016年11月 1日 (火)

生物学茶話@渋めのダージリンはいかが43: DNAの半保存的複製

ワトソン-クリック式DNAモデルをもう一度別の観点で図1(ウィキペディアより 以下同)に示します。中央にATおよびGCの塩基対があり、両側にデオキシリボースがリン酸で連結された鎖(バックボーン)があります。この鎖の端の構造をみると、左側の鎖の上端はデオキシリボースの5の位置にリン酸がつながった形で終了し、右側の鎖の上端はデオキシリボースの3の位置に結合したOHで終了しています。そして下端は左鎖は3ーOH、右鎖は5ーリン酸で終了しています。つまり鎖には方向性があり、両鎖の向きは逆になっています。

Dna_chemical_structur

5-リン酸で終わっている方を5’エンド(5プライムエンド)、3-OHで終わっている方を3’エンド(3プライムエンド)といいます。DNAは二重らせんの立体構造をとっていますが(図2)、しめ縄とは少し違って、ひと巻きごとに太い溝(major groove)と細い溝(minor groove)が交互に出現します。つまり二回り分がユニットとなって積み重なったような構造になっています。

Photo_2

必ずA-T、G-Cのペアで構成されているということは、遺伝にとっては好都合です。Aの相方Tが細胞分裂で失われても、また相方Tを見つければ元の遺伝情報が保存されることが期待できます。
800pxarthur_kornberg

DNAを合成する酵素は1956年にアーサー・コーンバーグ(1918~2007 図3)によって発見されました(3)。この酵素は

ヌクレオシド3リン酸+DNA(n) → ピロリン酸+DNA(n+1)  n:鎖の長さ

という反応を触媒します。DNAの末端にある3’OHがヌクレオシド3リン酸にアタックしてピロリン酸を解離させ、残ったヌクレオシド1リン酸を3’OHに結合させるわけです。これによってDNAの鎖は1ヌクレオチド分だけ長くなり、繰り返しによってさらに長い鎖をつくることができます。この酵素の発見によってコーンバーグは1959年度のノーベル医学・生理学賞を授与されました。酵素の名前は DNA polymerase ということになりました。

ワトソン・クリックが受賞したのは1962年ですから、アーサー・コーンバーグの場合異常に早く受賞したことがわかります。ただコーンバーグの発見した酵素は、大腸菌のゲノムを複製する機能を持つ酵素ではなく、DNAに発生したエラーを修復する酵素だったのです。ゲノムを複製するメインの酵素は1972年になってから、次男のトーマス・コーンバーグによって発見されました(4)。本来なら親子でノーベル賞をもらうべきだったかもしれません。ちなみに長男のロジャー・コーンバーグは RNA polymerase の研究でノーベル化学賞を受賞しています。DNAの複製については別稿で詳述します。ここではメセルソンとスタールの歴史的な実験についてだけふれておきます。

A-T、G-C塩基対の構造をもう一度みてみると(図4)、NとNまたはNとOとの間に水素原子がはさまれています。このような化学結合を水素結合といいます。この化学結合をはがすために必要なエネルギーは、N-H・・・Oの場合8KJ/モル、N-H・・・Nの場合13KJ/モルで(1)、共有結合の場合と比べて1~2桁くらい小さなエネルギーでひきはがせる弱い結合です。例えば水分子のHとOをはがすには、463KJ/モルのエネルギーが必要です(2)。

Photo_3

弱い力で二本の鎖が結合しているのなら、何かジッパーのような機構でDNAの二重らせんがはがされて一重となり、そこからまた相方のらせんが合成されて二重になることが証明されれば、非常に都合良く遺伝情報の複製が説明できます。このアイデアはロマンティックですが証明されなければなりません。

DNAの複製の様式には3つの可能性が考えられます(図5)。ひとつは分散型。両方の鎖に親由来の素材と新しい素材が併存する二重らせんが2本形成されることになります(図5A)。半保存的複製では、すべて親由来の素材でできている単鎖とすべて新しい素材でできている単鎖がまきついてできた二重らせんが2本形成されることになります(図5B)。最後に保存的複製では、両鎖とも親由来のものと、両鎖とも新素材のものとの2重らせんが形成されます(図5C)。

Photo_4

メセルソン(1930~)とスタール(1929~)は大腸菌をN15(重い窒素)の培地とN14(普通の窒素)の培地でそれぞれ培養します(図6、参照5)。それぞれのフラスコから大腸菌を集めDNAの重さを遠心分離で測定すると、N15の培地で育てた場合は茶色で、N14の培地で育てた場合はオレンジ色で表してありますが、当然N15の場合の方が重くて下に沈みます。N14の場合は軽いので上の方の画分に浮いています。

N15の培地で育てた大腸菌を、N14の培地に移して、20分で1回細胞分裂を行うような条件で培養します。20分経過した大腸菌のDNAを分析すると、茶色の位置とオレンジの位置の中間の重さ(密度=densityで測定)の位置(赤)にひとつのバンドが現れました。この結果、親由来のDNAのみでできている茶色のバンドがないことが判ったので、保存的複製ではあり得ません。

491pxmeselsonstahl_

次に40分経過してからDNAを分析すると、中間の位置のもの(赤)が50%、軽い位置のもの(オレンジ)が50%になりました。分散型の複製なら、すべてのDNAは同じ重さ(密度)のはずなので、このように2本のバンドができることはあり得ません。

半保存的複製と考えると、図7の一番右側に示すように、2回細胞分裂が起こった場合、親由来素材と新素材が1:1の二重鎖が2本と、新素材のみの二重鎖が2本できるので、実験の結果をうまく説明できます。

分散型複製あるいは保存的複製では、図7に示すようにこのような実験結果にはなりません。前者ではどんな場合もバンドは1本、後者では20分では重(茶)1:軽(オレンジ)1、40分では重1:軽3となり、中間の重さのもの(赤バンド)はできません(図7)。

Photo_5

このような結果から、メセルソンとスタールはDNAの複製は半保存的に行われると結論しました。そしてジッパーの役割はDNAポリメラーゼ( DNA polymerase )が果たすということになりますが、実際のメカニズムはDNAポリメラーゼ以外にも多くの因子が関与していて、これについてはいずれ稿を改めて述べます。

メセルソンとスタールの実験結果は、DNAの構造が相補的な二重らせんであることとよく符合します。細胞が分裂するときには、DNAの2本鎖が1本鎖にわかれ、それぞれが相方のDNAの鋳型になることによって遺伝情報の複製が行われると考えると、細胞増殖や遺伝という現象がうまく説明できます。

参照

1)https://ja.wikipedia.org/wiki/%E6%B0%B4%E7%B4%A0%E7%B5%90%E5%90%88

2)http://mh.rgr.jp/memo/mq0110.htm

3)Arthur Kornberg. The biologic synthesis of deoxyribonucleic acid, Nobel Lecture, December 11, (1959)
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1959/kornberg-lecture.pdf

4) Kornberg T, Gefter ML. Deoxyribonucleic acid synthesis in cell-free extracts. IV. Purification and catalytic properties of deoxyribonucleic acid polymerase III.,  J. Biol. Chem. vol. 247 (17): pp.5369-5375 (1972)

5)Matthew Meselson & F. W. Stahl. "The Replication of DNA in Escherichia coli",Proc Natl Acad Sci USA,Vol.44,p.671-682 (1958)
https://en.wikipedia.org/wiki/Meselson%E2%80%93Stahl_experiment

|

2016年10月28日 (金)

生物学茶話@渋めのダージリンはいかが42: 二重らせん

アーウィン・シャルガフ(1905年~2002年 図1)は現在のウクライナで生まれたユダヤ人です。ベルリン大学で研究をしていましたが、ナチの台頭でフランスに逃れ、さらにニューヨークのコロンビア大学に職を得て、40年間勤めました。

シャルガフはもともと核酸の研究者ではありませんでしたが、1944年に発表されたエイヴリーの論文の結論「遺伝物質はDNAである」(やぶにらみ生物論41に詳述)に「筆舌に尽くしがたい衝撃」を受け、それまでやっていた研究を全部やめて核酸の研究にのめりこんでいきました(1)。

発表された当初、多くの研究者がエイヴリーの論文に衝撃を受けたというわけではなく、シャルガフによればほとんどの科学者が関心を持たなかったそうです。それは彼の言葉によれば「みな権力の回廊で自らのコマ廻しに忙しすぎたので見逃してしまったから」ということになりますが(1)、当時の知識では、DNAの種特異性がわかっていなかったので、あまり重要なことではないとみんな注目しなかったのでしょう。

180pxerwin_chargシャルガフにとって幸運だったのは、ちょうど1944年にペーパー・クロマトグラフィーという分析技術が報告され、DNAに含まれる4種の有機塩基をきれいに分離することができるようになった上に、同時期に紫外線分光光度計が売り出され、各塩基の検出も簡単にできるようになったことです。

シャルガフと共同研究者達はこれらの先進的な技術を使って、様々な生物のアデニン(A)・グアニン(G)・シトシン(C)・チミン(T)の量を測定し、それらの比率が生物の組織・器官では同じですが、種によって様々に異なることを示しました(図2)。

これは当時主流であったエイヴリーのテトラヌクレオチド仮説の理論には相反するものでした。しかし彼はさらに研究を進めて1950年に、

A=T、G=C、しかし A=G=C=Tではない

という驚くべき法則を発表しました(2)。

Photo

生物種によってA・G・C・Tの割合はまちまちですが、AとTの比率およびGとCの比率は極めて1に近いということがわかりました。シャルガフもこのことを論文に書くのは怖くて、結局校正の段階で追加して発表したそうです。

この発表は主にDNAの構造をX線解析によって研究していた人々の注目を集め、実際英国のウィルキンスをはじめ何人かの研究者にDNAのサンプルを譲渡したそうです(1)。

シャルガフは1952年に英国のケンブリッジ大学に行って、ジェームス・ワトソン(1928年~)とフランシス・クリック(1914~2004)(図3 ウィキペディアより)にこの法則について説明したそうですが、その時の詳しいいきさつは文献(1)に詳述してあります。ワトソンの著書にもこのことは書いてあって、シャルガフの法則はDNAの分子モデルを考える際に大いに参考になったと思われます。

シャルガフはこの時に二人かららせん構造についての話しを聞いていたのですが、彼はDNAの特異性に関してはトポロジーが重要だとは思っていたものの、らせん構造については余り興味を持たなかったようです。

シャルガフはAとT、およびCとGが構造的に隣接しているという考え方を以前にしていたことがあるが、それは廃棄したとこの会談で述べたことを記してします(1)。その廃棄した理由が、本の説明(1)では私にはよくわかりませんでした。ワトソンとクリックも廃棄する十分な理由はないと考えたと思います。

Photo_2

結局この会談はシャルガフが、ワトソンとクリックはふたりとも化学のど素人だと判定した段階でうまくいかず、気まずく終わったようです。シャルガフのもっと重要な用はパリでの国際会議で、そこではハーシーとチェイスがDNAが遺伝物質であるという決定的な証拠を示し(詳細はやぶにならみ生物論41に記述)、いよいよDNAが分子生物学の主戦場となることは明らかになりました。

その頃英国ではDNAの構造研究の中心は、ワトソンとクリックがいたケンブリッジ大学ではなく、ロンドン大学のモーリス・ウィルキンス(1914~2004)の研究室でした。そこでは若手研究者だったロザリンド・フランクリン(1928~1950)とボスのウィルキンスが激しく仲違いをして、プロジェクトがうまくいっていませんでした。

その間隙を縫ってワトソンとクリックはDNAの3重らせんモデルを考案し、フランクリンに見てもらったのですが、リン酸がらせんの内側にあると水分子を置くスペースがなくなると即座に否定され、彼女におもちゃを使って遊んでいるバカ者共という印象を与えてしまったのです。これでふたりはDNAの研究から手を引かされるという羽目に陥りました(3)。

しかし二人にとって、ここで思わぬ幸運が舞い込んできました。それは1953年に当時生体物質の構造化学では第一人者であるライナス・ポーリング(1901年~1994年)が、二人が考案したものに近い間違った3重らせん構造のモデルを提出したことでした。しかも彼のモデルではリン酸基がイオン化しておらず、それじゃあ核酸は酸じゃないのかというおまけまでついていて、これでワトソンとクリックは俄然勢いづきました。

彼らはロンドン大学のグループにもう一度らせん構造を考えてみようと説得に行き、ウィルキンスにフランクリンの学生であるゴスリングのX線回折写真を見せてもらうことに成功しました。それはまさしくらせん構造を示す回折像だったのです(3)。ところがこれはフランクリンの許可を得ていなかったため、後に問題になりました。

ウィルキンスに写真をみせる権限があったことはわかりますが、フェアーなやり方とは言えません。またフランクリンが書いた非公開の年次レポートを、閲覧する権限のあるペルーツが部下のクリックに渡したとされており(4)、これもさらにフェアーとは言えません。ただこのようなことは研究の世界では日常茶飯事であることもまた事実です。

ワトソンはアデニンとチミン、グアニンとシトシンがそれぞれペアで存在するために可能な構造を示し(図4)、それを見たクリックは鎖が逆向きの2重らせんの構造をすぐに思いついたそうです(図5)。このモデルは直ちに Nature 誌に投稿され、受理されました(5)。

ワトソン・クリック・ウィルキンスは、「核酸の分子構造および生体における情報伝達に対するその意義の発見」に対して、1962年にノーベル生理学・医学賞を受賞しました。ロザリンド・フランクリンは1958年に37才の若さで亡くなっていたので、受賞対象にはなりませんでした。

Photo_4

Photo_5

ワトソンとクリックにしてみれば、フランクリンは執拗にDNAのモデル構築に反対して、まるで自分たちの仕事が妨害されたように見えたでしょうし、フランクリンにしてみれば荒唐無稽なモデルをもてあそんでいる彼らとまともにつきあう必要はないと考えたというのもうなづけます。ただフランクリンの写真を見なければ正しい分子モデルはできなかったはずで、DNAの二重らせんモデルはこの3人に等しく栄誉が与えられるべきだったと思います。

ロザリンド・フランクリンの業績については友人のアンネ・セイヤーが1975年に本を出版しており(6、図6)、最近ではきちんと評価されています。また最初に鮮明なDNAのX線回折写真を撮影したレイモンド・ゴスリング(1926~2015)は、当時博士課程の学生だったので蚊帳の外になってしまいましたが、その後も素晴らしい写真を撮影して、大いにDNAの分子モデルの作成に貢献しており、本当は彼もノーベル賞をもらうべきだったのかもしれません。

Photo_6

参照:

1) 「ヘラクレイトスの火 (Heraclitean Fire)」 アーウィン・シャルガフ著 村上陽一郎訳 岩波書店 (1990)

2) Chargaff, Erwin; Chemical specificitiy of nucleic acids and mechanism of their enzymatic degradation. Experientia vol.6, pp.201-209 (1950)

3) DNA: The secret of Life. James D. Watson and Andrew Berry, Arrow Books, 2004.  邦訳:青木薫 講談社刊

4) https://ja.wikipedia.org/wiki/%E3%83%AD%E3%82%B6%E3%83%AA%E3%83%B3%E3%83%89%E3%83%BB%E3%83%95%E3%83%A9%E3%83%B3%E3%82%AF%E3%83%AA%E3%83%B3

5) J.D. Watson and F.H.C. Crick: Molecular structure of deoxypentose ribonucleic acids. Nature vol.171, pp.737-738 (1953)
http://www.nature.com/nature/dna50/watsoncrick.pdf

6) Rosalind Franklin and DNA, written by Anne Sayre, W.W. Norton New York and London (1975)

|

生物学茶話@渋めのダージリンはいかが41: 遺伝情報を担う物質は何か?

フレデリック・グリフィス(1879年 - 1941年)は第一次世界大戦中に設立された英国保健衛生省の病理学研究室で研究を行いました。彼の仕事は多くの患者から肺炎菌を集めて培養し、分類を行うことでした。

この仕事を進めているうちに、グリフィスは菌の種類・株によってホストの免疫機構に対する耐性が大きく異なることに気がつきました。細菌のなかには細胞壁(セルウォール)の外側に莢膜(カプセル)というオーバーコートをかぶっているものがあり、これらの菌は感染した際に、ホストの免疫機構によって排除されにくいのです。この理由としてカプセルの主成分である多糖類がタンパク質に比べて抗体との反応が弱いということがあげられますが、その他にもカプセルをもつ細菌は、白血球やマクロファージに食べられにくいという性質があります。後者の理由は正確にはいまでもわかっていないようです。

カプセルを持つ菌はヒス染色(ゲンチャナバイオレットという色素で染色する方法)という方法で識別できます。カプセルを持っている場合、菌体は強く紫色に染色され、そのまわりでピンク色で囲まれているような感じに染色されます(1)。

肺炎菌のR株(図1青)はカプセルを持たず病原性がありませんが、S株(図1赤)はカプセルを持っており病原性があります。S株は熱処理によって病原性を失いますが、この熱処理したS株と非病原性のR株を同時にマウスに投与すると、意外にも病原性が復活してマウスは死亡しました。グリフィスは死んだS株の形質転換因子(transforming principle) がR株の形質を転換し(transform)、病原性を与えたと説明しました(2)。この形質転換因子こそDNAだということが後にわかるのですが、当時は全くわかりませんでした。

A_2

1形質転換のメカニズムを解明しないまま、グリフィスはナチス・ドイツによる1841年のロンドン・ブリッツ(ロンドン大空襲)によって不慮の死をとげてしまいました。

彼が実験室で爆撃を受けたという説がありますが、研究によって、自宅に居たときの空爆で死亡したということになったそうです。

1941年のランセット5月3日号には obituary (=死亡記事、参照3)が掲載されています。それによるとグリフィス(図2)は犬の散歩が趣味の、大変慎重な人で、一生涯 「Almighty God is in no hurry - why should I be?」 という主義を貫いたそうです。

同じページに、彼の同僚で著名な細菌学者のウィリアム・スコットも空爆で死亡したという記事が掲載されています。

2グリフィスが残した課題はオズワルド・エイヴリー(1877年 - 1955年、図3)によって引き継がれました。

彼はグリフィスが言う形質転換の原因は細菌がまわりの環境から遺伝物質をとりこむことができるからだと考えました。

そこでS菌の細胞を破壊し、内容物をタンパク質分解酵素で処理してR菌の培養液に加えました。するとこの処理が無効だったことがわかり、タンパク質は形質転換に関与していないことが示唆されました。

ところがDNA分解酵素で処理すると、R菌は形質転換を起こさなかったのです。これはDNAが形質転換に関与していることを強く示唆しました(4)。

この論文が発表されたのは1944年ですからエイヴリーはすでに67才でした。しかも太平洋戦争の真っ最中です。日本ではほとんどの学術雑誌が休刊していましたが、米国では発行されていて、しかもこのような重要な基礎研究の論文が発表されていたということです。私はこれは国力の違いもありますが、さらに文化の違いもあると思います。基礎科学の振興が民族・国家さらには人類にとって決定的に重要だということは、現在の日本人にも浸透していないと思います。

とは言っても、当時はDNAが遺伝物質だなんて考えている人は極めて少数だったので、エイヴリーの実験結果もそれほど注目されるには至りませんでした。

ハーシーとチェイス(図4 左:アルフレッド・ハーシー 1908年 - 1997年、右:マーサ・チェイス1927年 - 2003年)は大腸菌に感染するT2ファージ(ある種のウィルス)を使って実験しました。このときチェイスはまだ博士号を取得していませんでしたが、共同研究者の扱いになっています。T2ファージはタンパク質とDNAだけからなっており、大腸菌に感染すると菌内で増殖して、菌細胞を破壊して外界に出て、また大腸菌に感染するというライフサイクルを行います。ですから子孫をつくるための情報はタンパク質かDNAのどちらかが持っているはずです。

彼らが以下の実験をしてみようと思ったきっかけは、トーマス・アンダーソンが撮影したT2ファージが足で細菌の表面に付着している電子顕微鏡写真をみたのがきっかけだそうです。

A_5
そこで彼らはまずシャーレAの培地に放射性のリン(P32を含むオルトリン酸)を加え、もうひとつのシャーレBには放射性の硫黄(S35を含む硫酸マグネシウム)を加えてT2ファージと大腸菌を培養します。それらからP32を含むファージとS35を含むファージを分離します。

DNAは硫黄を含まず、ファージのタンパク質はリンを含まないので、シャーレAから分離したファージはDNAが放射性Pを含み、シャーレBから分離したファージはタンパク質が放射性Sを含んでいます。それぞれを大腸菌に加えて感染させます(図5)。ファージは細菌にくっついて自らの遺伝物質を細菌に注入します(図5の1)。

A_6

感染したタイミングを見計らって、培養液をブレンダーに入れて激しく攪拌し(図5の2)、ファージを菌体から引きはがします。次に遠心分離法によってファージと菌体を分離します(図5の3)。上清がファージで沈殿が菌体というかたちで分離できます。

そして沈殿から回収された菌体に含まれる放射性物質を検査するとそれはP32で、S35は含まれていませんでした。すなわち遺伝情報の担い手はDNAであり、タンパク質ではないことが示されました(図5の4、参照 5)。この研究はエイヴリーが提唱していた<<DNAが遺伝情報の担い手である>>という説を強くサポートするものであり、この研究などによってハーシーは1969年にノーベル医学生理学賞を授与されています。一方チェイスは離婚や痴呆症のため後半生はよい人生を送ることができなかったようです。

ウィルスによって被害を受けるのは細菌だけではなく、哺乳動物なども被害を受けるわけですが、哺乳動物に感染するウィルスはT2ファージのようにDNAを細胞に注入するというような方法ではなく、細胞に吸着したあと、そのまま細胞に食べられるというような形で取り込まれるとか、ウィルスの外殻と細胞膜が融合して、中身が細胞内にはき出されるとかさまざまな形で細胞に侵入します。メカニズムの詳細は現代医学においても重要な研究課題です。

参照:

1) http://www.mutokagaku.com/products/reagent/bacterialstain/hisstain/

2) Frederick Griffith, THE SIGNIFICANCE OF PNEUMOCOCCAL TYPES. Journal of Hygiene, vol.XXVII, pp.113-157, (1928)
  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2167760/

3) Obituary, The Lancet vol.237, no.6140, pp.588-589, (1941)   http://www.sciencedirect.com/science/article/pii/S0140673600951742

4) Oswald T. Avery, Colin M. MacLeod, and Maclyn McCarty, STUDIES ON THE CHEMICAL NATURE OF THE SUBSTANCE INDUCING TRANSFORMATION OF PNEUMOCOCCAL TYPES. Journal of Experimental Medicine vol.79, no.2, pp.137-158, (1944)   https://profiles.nlm.nih.gov/CC/A/A/B/Y/_/ccaaby.pdf

5) A. D. HERSHEY AND MARTHA CHASE:INDEPENDENT FUNCTIONS OF VIRAL PROTEIN AND NUCLEIC ACID IN GROWTH OF BACTERIOPHAGE. The Journal of General Physiology vol.36, pp.39-56 (1952)
http://jgp.rupress.org/content/jgp/36/1/39.full.pdf

|

2016年10月21日 (金)

生物学茶話@渋めのダージリンはいかが40: 核酸構造解析のはじまり

Photo_10アルブレヒト・コッセル(図1)はミーシャーが生化学・生理学を学んだホッペ=ザイラーの研究室、といってもチュービンゲンではなくてストラスブール(現在はフランス)にあった研究室で1877年から1881年まで助手をしていました。

当時ホッペ=ザイラーはミーシャーが発見した奇妙な酸性物質ヌクレイン(後に核酸と呼ばれる)に関心を寄せていて、コッセルも巻き込まれることになりました。その後ベルリン大学、大学、マールブルク大学、ハイデルベルク大学で教鞭をとりながら研究を進めました。

19世紀末から20世紀初めにかけてコッセルは、化学の手法のみによって、エミール・フィッシャーをはじめとする多くの研究者の協力を得て、核酸(DNA)が4種類の成分、アデニン・グアニン・シトシン・チミンと糖を含むことを証明しました(図2)。

現在では低分子物質の化学構造は分析機器によって簡単に判るわけですが、当時は大変な作業で、いろいろと紆余曲折を経てようやく構造決定にこぎつけました。アデニン・グアニン・シトシン・チミンはまとめて核塩基と呼ばれます。

Photo_11

コッセルはこの業績によって1910年にノーベル賞を受賞しています。受賞講演の中で彼は、「核酸などの生体分子はビルディング・ブロックにたとえられる部品(ある種の原子のグループ)の集合体で構成されており、部品の段階で体内に吸収されて、体内で計画に基づいて生体分子が形成される」という考え方を述べています(1)。これは非常に先進的な考え方であり、コッセルのセンスの良さを感じます。

もうひとつの核の塩基ウラシルは、1900年にアルベルト・アスコーリによって酵母の核酸から発見されました。現在ではウラシルはDNAにはほとんど含まれず、もうひとつの核酸であるRNAの成分であることが知られています。現代的表現の構造式を図3に示します。

Photo_4

コッセルは核酸には糖が含まれることを見いだしましたが、糖と核塩基との関係、さらにミーシャーが核酸の成分としているリン酸との関係は明らかではありませんでした。これらの構造的関係を明らかにしたのがフィーバス・レヴィン(図4)です。

レヴィンは1905年にニューヨークのロックフェラー医学研究所の研究室長に抜擢され、ずっとそこで研究を続けました。当時この研究所には野口英世も在籍していました。

Photo_5レヴィンは1909年に核酸に含まれている糖がリボース(D-ribose)であるとし、1929年にはこれがデオキシリボース(2-deoxy-D-ribose)であると修正しました。

現在ではDNAの成分がデオキシリボース、RNAの成分がリボースであることが判っています。ここにいたってようやく ミーシャーのリン酸、コッセルの有機塩基、レヴィンのデオキシリボースというDNAのすべての構成要素が出そろったわけです。

 

レヴィンのもうひとつの大きな業績は糖・核塩基・リン酸の構造的関係を明らかにしたことです。

 

図5で示されるように、リン酸-デオキシリボース-塩基が化学結合し、核酸の基本的な構成ユニットとなっていることをレヴィンは解明しました。このユニットはヌクレオチド(nucleotide)と命名されました。

Photo_6

ここまではよかったのですが、レヴィンはこの構成ユニットがどのように連結されているかについて、テトラヌクレオチド仮説という誤った仮説を発表し、大きな混乱をもたらしました。彼の仮説によると、アデニン-糖-リン酸、グアニン-糖-リン酸、シトシン-糖-リン酸、チミン-糖-リン酸という4つのユニットが図6のように連結されて核酸を構成していることになります。レヴィンの業績については文献(2)にまとめられています。

Photo_8

テトラヌクレオチド仮説に対する決定的な反論はスウェーデンの科学者、スヴェドヴェリ(Theodor Svedverg 1884-1971、参照3)によって行われました。スヴェドヴェリは超遠心機を開発し、分子の沈降速度からその分子の大きさを計測しました。それによれば、DNAはテトラヌクレオチドのような分子とは比較にならないくらい巨大な分子であることがわかりました。

このほかもしレヴィンの説が正しければ、アデニン・グアニン・シトシン・チミンは常に1:1:1:1で存在しなければなりませんが、測定が精密になればなるほどそうではないことが明らかになってきました。こうして謎が深まる一方の状況で、レヴィンは1940年に亡くなってしまい、世界は第二次世界大戦に突入します。

最後にヌクレオチド関連物質の命名法について述べておきましょう(図7)。

5炭糖(炭素原子5個を含む糖、時計回りにそれぞれの炭素原子に1~5の番号がつけられています)のデオキシリボースまたはリボースは、炭素原子4個と酸素原子1個からなる複素環の5の位置にもう一つ炭素原子が結合した形になっています。1の位置の炭素が有機塩基(図7では Base と書いてあります)の窒素と結合してC-N結合でつながっています。このデオキシリボース(またはリボース)と有機塩基が結合した分子をヌクレオシド(nucleoside, ヌクレオサイド)と呼びます。

ヌクレオシドの5炭糖の5の位置の炭素にリン酸が結合した分子をヌクレオチド(nucleotide, ヌクレオタイド)と呼びます。ヌクレオチドにはリン酸が1個または2個または3個結合する場合があり(図7)、区別が必要な場合はそれぞれ、ヌクレオシド1リン酸、ヌクレオシド2リン酸、ヌクレオシド3リン酸と呼びます。

Photo_9

ヌクレオシドには塩基として、アデニン、グアニン、チミン、シトシンが結合している分子があり、糖の2の位置がHだった場合、それぞれデオキシアデノシン、デオキシグアノシン、(デオキシ)チミジン、デオキシシチジンと呼びます。糖の2の位置がOHだった場合は、それぞれアデノシン、グアノシン、RNAの場合にはチミンでなくウラシルが結合していて、この場合ウリジンと呼びます、そしてシチジンです。チミジンの場合、ウリジンと判別が容易なので、頭にデオキシをつけないことがあります。

次にヌクレオチドですが、例えばアデノシンに3つのリン酸が結合している場合、アデノシン3リン酸(ATP=adenosine triphosphate)と呼びます。2つのリン酸が結合している場合はアデノシン2リン酸(ADP=adenosine diphosphate)、ひとつだとアデノシン1リン酸(AMP=adenosine monophosphate) ということになります。これらの物質の名前は、生化学を学ぶときには嫌と言うほど頻繁に登場します。

5炭糖の2の位置の炭素にHが結合する場合デオキシリボース、OHが結合する場合リボースと呼びます。DNAに構成要素はデオキシリボースです。アデニンとグアニンをまとめてプリン、チミンとシトシンとウラシルをまとめてピリミジンと呼ぶことがあります(図7)。

参照:

1)アルブレヒト・コッセルのノーベル賞受賞講演
https://www.nobelprize.org/nobel_prizes/medicine/laureates/1910/kossel-lecture.html

2)レヴィンの業績:PHOEBUS AARON THEODOR LEVENE 1869-1940、Proc NAS USA XXIII  pp.75-126 (1943)
http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/levene-phoebus-a.pdf

3)https://en.wikipedia.org/wiki/Svedberg

|

2016年10月17日 (月)

生物学茶話@渋めのダージリンはいかが39: DNAの発見

Friedrich_miescher_2フリードリッヒ・ミーシャー(1844-1895 図1)の父親はスイスのバーゼル医科大学解剖学・生理学の教授でした。ミーシャーは父の跡を継いでバーゼル医科大学を卒業し、耳鼻科の医師になるトレーニングをはじめましたが、子供の頃からの難聴のせいで診察はうまくいきませんでした。

また彼自身はもともとそんなに医師への興味はなく、むしろ生命現象の科学的解明に強い関心を抱いていたので、ドイツのチュービンゲン大学ホッペ=ザイラー教授の下で1868年から生理学の研究をはじめました。

ミーシャーは畑違いなので勉強していなかったと思いますが、1866年にはメンデルが遺伝の法則を発表しており、また同じ年にエルンスト・ヘッケルは遺伝情報が核にあるという説を発表していました。後者はおそらくミーシャーも知っていたと思われます。

ミーシャーは当初から生命現象を化学によって解明しようという目的で、生化学の創始者であるホッペ=ザイラーを師に選んだのです。ホッペ=ザイラーの研究室は中世からあるチュービンゲン城を改装した場所にあり、図2はミーシャーの研究室の有名な写真です(ウィキペディアより)。この部屋は中世には厨房として使われていたそうです。

Schloss_chemisches_labo

ミーシャーはまず細胞の化学組成を解明しようと考えました。選んだ細胞はシンプルな球形で、遊離細胞であるリンパ球です(図3)。最初はリンパ球を実験動物のリンパ節やヒトの血液から採取しようとしましたが、採取できる量が少なすぎたため、ホッペ=ザイラーの助言に従って、患者の膿(うみ)から採取することにしました。当時は消毒もいいかげんで、負傷者や手術した患者の包帯から大量の膿がとれたので、実験は軌道に乗りました。

膿というのは、若い人の中には見たことがない人もいるかもしれませんが、生体防御反応のひとつで、細菌を殺すために出動した白血球やリンパ球およびそれらの崩壊産物が主成分です。

800pxlymphocyte2

ミーシャーの実験プロトコルは次のようなものでした。

1: 当時核の未知タンパク質が遺伝物質ではないかというヘッケルらの考えがあったので、ミーシャーはまずこのアイデアが正しいかどうか検討することを目的として、核と細胞質の分離を試みました。

試行錯誤の結果、ブタの胃の抽出物に含まれるペプシンというタンパク質分解酵素を含む液に、膿の細胞を数時間浸しておくと、細胞が溶けて核が分離できることがわかりました。ペプシンはあの細胞説で有名なテオドール・シュワンが1836年に発見していました。

2: こうして得られた核を弱いアルカリで処理し、抽出した物質の溶液に酸を加えると、未知物質の沈殿が生じることを見つけました。同じような物は肝臓、睾丸、酵母、鳥の赤血球からも抽出可能でした(哺乳類の赤血球には核がない)。ミーシャーはこの物質が、それまで知られていたどのタンパク質とも異なることを確かめ、ヌクレインと命名して1869年に学会で発表しました(論文出版は1871年(1))。

このヌクレインが、現在の知識に照らせばまさしくDNAだったわけです。論文(1)はホッペ=ザイラーが出版する雑誌に投稿されましたが、ホッペ=ザイラーは1年間かけて、自分ですべて追試した上で掲載を許可しました。当時としてはリン酸が多量に含まれていたり、強い酸性だったりすることがなかなか信じてもらえなかったわれです。そのくらい異常で重要な意味のありそうな論文だと、ホッペ=ザイラーも感じていたと思われます。

3: 彼はヌクレインの元素分析を行ない、通常タンパク質が含む炭素、水素、酸素、窒素以外にリンを含むことを明らかにしました。ミーシャーはヌクレインの成分に多量のリン酸が含まれることから、ひょっとするとこれはタンパク質ではないかもしれないとは考えていたようです。

その後ミーシャーはバーゼル医科大学の生理学の教授となってヌクレインの研究を続けましたが、講義は苦手で研究環境としてはあまり良くなかったようです。さらに彼のヌクレインのサンプルは単に普通のタンパク質に無機リンが混入しただけだろう、という批判にはっきり答えられなかったため、しだいに忘れられそうになっていました。しかしそれでもミーシャーはこつこつとヌクレインの精製法の改良を続け、材料として理想的な鮭の精子から、かなり純粋な段階にまで精製することに成功しました。

細胞の染色法やミトコンドリアの発見で知られているリヒャルト・アルトマンは、タンパク質をほとんど含まない画分にヌクレインが存在することを確かめ、ヌクレインを核酸 (nucleic acid) と改名することを提唱し、この物質がタンパク質とは異なることをアピールしました。残念ながらこのアルトマンの論文はみつかりませんでした。ヌクレイン=核酸の精製法の進展はミーシャーの死後、シュミーデベルクによって論文にまとめられています(2)。

彼らは核酸をバラエティーのない固定した構造の物質と考えていたので、大きなバラエティーが必要な遺伝子の担い手としては不適切だと考えざるを得ませんでした。しかしいろいろな時代的制約などによる限界がありましたが、もちろんミーシャーやアルトマンと共同研究者達こそがDNAの発見者であり、彼らの萌芽的研究から20世紀の輝かしい分子生物学の歴史が誕生したことに疑いの余地はありません。ミーシャーの業績は Ralf Dahm によってまとめられています(3)。

P_04717322ミーシャーにはヌクレインの精製以外にもうひとつの業績があります。それは鮭の精子からプロタミンを発見し、精製したことです(4)。

プロタミンは塩基性のタンパク質で、ヌクレインの酸性を中和する役割が考えられました。現在から見ても、核の基本的な構成要素であるヌクレオソームは核酸とヒストン(またはプロタミン)の複合体であり、重要な知見であると言えます。

鮭の精子から採取されたDNAは現在でもよく研究用に使用されます(図4)。精製されたDNAは白い繊維状のもので、使うときはピンセットで一部を引き裂いて使います。

スイスのバーゼルにはミーシャーの名を冠した ”Friedrich Miescher Institute for Biomedical Research” が1970年に設立され、現在も活発に活動しています(5)。またチュービンゲンのマックス・プランク研究所には Laboratory of Friedrich Miescher があります(6)。

参照:

1) Miescher F. Uber die chemische Zusammensetzung der Eiterzellen. Med.-Chem. Unters. 4, 441-460 (1871)

2) Schmiedeberg O., and Miescher F. Physiologisch-chemische Untersuchungen uber die Lachsmilch. Arch. Exp. Pathol. Pharm. 37, 100-155 (1896)

3) Ralf Darm, Friedrich Miescher and the discovery of DNA. Develop. Biol. 278, 274-288 (2005)

4) Miescher F. Das Protamin - Eine neue organische Basis aus den Samenfaden des Rheinlachses. Ber. Dtsch. Chem. Ges. 7, 376 (1874)

5) http://www.fmi.ch/

6) http://www.fml.tuebingen.mpg.de/

|

2016年10月 9日 (日)

生物学茶話@渋めのダージリンはいかが38: ハエ部屋

メンデルの法則と染色体の挙動を結びつけたサットンの業績は大きかったわけですが、まだメンデルの言うエレメント=遺伝子が染色体上にあるという証明にはなっていません。染色体の上にあると考えるとメンデルの法則をうまく説明できるというレベルです。

サットン廃業のあとを受け継いで染色体説を発展させたのはトーマス・ハント・モーガンです。モーガンはもともと遺伝学者ではなく、発生生物学者でプラナリアなどの再生や発生を研究していました。プラナリアというとよく教科書に出てくる、頭を切れば頭が生えてくる、尾を切れば尾が生えてくるというあの生物です(図1)。モーガンは再生に必要な物質の勾配という概念を提出し、それは最近になって阿形らによって証明されました(1)。

Photo

Tsuda_umekoモーガンは若い頃ブラインマーカレッジという女子大学で教鞭を執っており、この頃の彼の学生の中には後に津田塾大学を創設する津田梅子(図2)もいて、彼女にはカエルの発生の研究をやらせていたそうです(2)。

発生生物学をやっていると、遺伝学者の考えていることが単純すぎるようにみえることは理解できます。というのは、たいして特徴のない受精卵から、さまざまな組織・器官が時間の経過と共にできてくることを観察していると、形質というものはどんどん動的に変化するもので、遺伝子で単純に規定される静的なものではないという考え方になりがちだからです。

しかし当時はメンデルの再発見で大騒ぎとなっており、彼がウィルソンに呼ばれて来たコロンビア大学にはサットンという減数分裂を目視した俊英の大学院生がいました。モーガンがメンデルの法則や染色体説の真偽に関心を抱いたのは当然でしょう。モーガンはまたド・フリースの突然変異説に傾倒し、ダーウィンの自然選択が成立するためには突然変異が重要な役割を果たすものと考えました。そして1907年頃から、それらの課題を研究するために最適な実験動物としてキイロショウジョウバエを選択しました。

キイロショウジョウバエ(図3)はいわゆるコバエの一種であり、体長2~3ミリで、乾燥酵母・オートミール・蔗糖などで手軽に飼育することができます(図4)。メスが10日で成熟して、一度に50個前後の卵を産むことができるというのが研究上の魅力です。モーガンはこれで飛躍的に研究が進むと期待したのでしょうが、最初の頃はまったくうまくいきませんでした。それは突然変異体を検出するのが非常に難しかったからです。何千何万という小さなハエを観察して変異を同定するのは骨が折れます。

Drosophila_mela

800pxdrosophil

しかし1910年になって彼の前に救世主が現れました。それは白眼の突然変異体(ミュータント)で、これを野生型のメス(赤眼)と交配させるとF1はすべて赤眼となりますが、F2のオスは50%の確率で白眼になることがわかりました(図5、参照3)。

Sexlinked_inh

この少し前にウィルソンとスティーヴンスはショウジョウバエのメスは2本(1対)のX染色体を持つが、オスはX染色体を1本しか持っていないことを観察していました。このことを考え合わせて、オスの1本のX染色体に変異が発生すると白眼になり、それはメンデルのいう劣性変異のため2本の性染色体を持つメスでは発現しないとするとうまく説明できます。すなわちこの白眼の変異は性染色体Xと挙動を共にすることがわかりました。

ショウジョウバエはヒトと同じくメスはXX、オスはXYという性染色体をもっていますが、オスが父親から引き継ぐY染色体には眼の色にかかわる遺伝子は存在しないので、この場合考慮しなくていいのです。

この研究結果によってモーガンは染色体説に強固な根拠を与えることになりました。モーガンの研究室にはスターティバント、ブリッジス、マラーなどの多くの優秀な学生が集結するようになり、人海戦術でショウジョウバエのミュータントを解析すると、次々と変異が見つかり(図6)、モーガン研究室はまさしく世界の遺伝学の中心となっていきました(4)。

Drosophila_gene

カルヴィン・ブリッッジスは突然変異体を探し出す特異な才能があり、1925年にカタログ記載された突然変異体365種類のうち240種類は彼が発見したものだそうです(5)。モーガンが最初の2~3年全く突然変異体を検出できなかったことを考えると、これは驚異的です。

そのほかにもブリッジスはいろいろと研究室発展の基盤となるような知見や技術を開発しました。ただ彼は知り合った女性すべてを口説くというドン・ジョバンニのような男で、ドン・ジョバンニはつきあった女性のカタログを従者につくらせていましたが、彼は自分でつくっていたそうです。そして寒い日にカブリオレでデートして心臓麻痺をおこし、若死にしてしまいました。

ショウジョウバエの染色体はわずか4対で、しかもそのうち1対は非常に小さなもので(図7の中央あたりにみえる)、わずかな遺伝子しか乗っていません(図7)。ですから2つの形質に着目したとき、それらが同じ遺伝子に乗っている確率はほぼ30%で、23対の染色体を持つヒトなどと比べると非常に高い確率です。すなわちメンデルの独立の法則が成立しない場合が非常に多いということです。

Photo_2

図8のようにAとbという形質が同じ染色体に乗っていれば、遺伝の際にまるで一つの形質のように行動を共にするはずなのですが、時にそれが分かれてしまうことがあります。このことについて、1909年にベルギーの生物学者ヤンセンスが、減数分裂で4つの染色体が集合した際に、それぞれの染色体の1部が交換されるということを発見していました。Aとbの形質の間で染色体がちぎれて、a、Bの相方と交換されるとAB、abという新しい連鎖が成立します。染色体の一部が交換されてできた新たな染色体を組み替え型染色体といいます(図8)。

Photo_5

ここでアルフレッド・スターティバントは考えました。染色体がランダムな位置でちぎれるとすると、染色体上で離れた位置にある遺伝子は別れやすく、近傍にある遺伝子は分かれにくいと想定されます。すなわち「組み換え型染色体ができる確率は遺伝子A、Bの染色体上の距離に比例する」という公式が成立します(図9)。ですから組み替え型染色体ができる確率を多くの遺伝子について調べれば、遺伝子地図の作成が可能であることに気がついたのです。

Photo_3

例えばAという形質とBという形質に注目したとき、両者が組み替えによって別れる確率が10%であるとします。そしてBとCは5%だとすると、さらにAとCについて検査してみると15%だった場合、A、B、C という形質は染色体上に図9に示されるような順と距離で配列されているということが推定されます。

組み替え確率の%を距離に置き換えて、センチモルガンという単位を使用します。染色体全体を100センチモルガンとして、多くの形質について上記のような検査を行うと、原理的には何百何千という遺伝子を染色体上に並べることができます。こうして染色体地図を製作することができます。これは遺伝子が染色体上にあるということの決定的な証明となりました。

ハーマン・マラーはX線照射によって突然変異が誘起されることを発見し、遺伝学・放射線医学生物学の進歩に大きな足跡を残しました。彼は筋金入りの共産主義者で、一時期レニングラード(現サンクトペテルブルク)に移住して、ソ連の科学アカデミーで活躍していたこともあるそうです。しかし彼の理想とは裏腹に、次第にソ連の遺伝学界はルイセンコに汚染され、彼を招いてくれたヴァヴィロフも獄死しました。

「ハエ部屋」と呼ばれていたモーガンの研究室からは、モーガン自身以外にも上述のマラーや後で登場するビードルというノーベル賞受賞者をはじめとして多くの遺伝学者が輩出し、スターティバントの弟子のデルブリュックやルイスもノーベル賞を受賞しました。

「非凡な農民:http://www.agr.ryukoku.ac.jp/teacher/nakamura_george_beadle/chapter5.html」 というサイトに興味深い記述があったので、最後に引用させてもらいました。

以下引用:
モルガンと彼の学生達が生み出す知的なエネルギーは物理的な環境の劣悪さをものともしなかった。コロンビア大学構内のシェルマホーン・ホールの6階に位置する彼らの仕事場は16 x 23 フィートの広さの一部屋で、そこには8つの机が所狭しとばかりに詰め込まれていた。コロンビア大学はまだ大きな居住用アパート群に囲まれてはおらず、実験室からは近くの牧草地で草を食むヤギの群れが見えた。訪問客は即座に部屋の汚さと乱雑な様子に気づいて驚くのだった。中でハエが飛び回るガーゼで蓋をしたガラス瓶が紙切れや終了した実験から出た屑ゴミで溢れた机と棚の空間を奪い合っていた。ハエ・グループの神秘的雰囲気の一部は、ハエを収めるミルク瓶が近くの家々の玄関先から収穫されたものではないかという疑いから来ていた。ハエは割り当てられたミルク瓶に閉じ込められてはいたが、あらゆる隙間と割れ目に潜むゴキブリがハエの餌や他の食物の残り滓の上を自由に這いずり回っていた。もちろんネズミが部屋の汚物置き場に集まった残り物の中から食物を探して運動会をしているような有様だった。部屋には酵母と腐りかけたバナナの匂いが漂っていた。時折、建物の友人や同僚達が壁を飾るバナナの茎をもらいにやって来たりした。
:引用終了

ヒトが生活している中で、最もめざわりで迷惑な生物はハエ・ゴキブリ・マウス・ラットなどですが、それらが大変有用な実験動物として利用されていることは、一般の人々に理解して欲しいことです。迷惑動物を材料に使って研究しているからといって、白い眼で研究者をみるのは無知の証明です。

図の多くはウィキペディアから借用させていただきました。

参照:

1)http://www.kyoto-u.ac.jp/static/ja/news_data/h/h1/news6/2013/130725_1.htm
The molecular logic for planarian regeneration along the anterior-posterior axis. Umezono et al. Nature 500, 73-76 (2013)

2)http://argmyntbk.exblog.jp/9395215

3)https://en.wikipedia.org/wiki/Thomas_Hunt_Morgan

4)「細胞学の歴史 生命化学を拓いた人々」 Arthur Hughes 著 西村顕治訳 八坂書房 1999年刊

5)http://www.agr.ryukoku.ac.jp/teacher/nakamura_george_beadle/chapter5.html

|

2016年10月 5日 (水)

生物学茶話@渋めのダージリンはいかが37: 染色体説

Birthofthドイツの生物学者シュライデンとシュワンが細胞説(生物の体は一般に細胞から成り立っている)を発表したのは1838・1839年ですが、1832年にベルギーの生物学者デュモルティエが細胞分裂を報告しているにもかかわらず、シュライデンとシュワンは細胞の増殖については正しい理論に到達しませんでした(1)。

ドイツの病理学者ルドルフ・フィルヒョウが「すべての細胞は細胞から生じる」という理論を提唱したのは1958年であり、メンデルが1860年代に遺伝の法則を発表する直前でした。その頃にはまだフィルヒョウの考え方が一般に認められていたわけではないようです。

ドイツの生物学者テオドール・ボヴェリはウニの発生の研究から、正常な胚発生のためには分裂した細胞それぞれにすべての染色体が存在することが必要であることを示しました。また染色体が異常になることが「がん」の原因であるという学説を提唱しました(2)。すなわち生物の形質には染色体が大きな影響を与えることを示唆したわけです。

細胞説誕生に関する詳細は文献(3、表紙は図1)に詳しい記述があると思われます(私は未読)。

Suttonメンデル再発見直前の1898年、ウォルター・サットン(図2)はカンザス大学の細胞学者クラレンス・E・マクラングの学生として染色体研究を始めました。

1900年からはマクラングの勧めでニューヨークのコロンビア大学に移り、細胞学の大家であるエドマンド・B・ウィルソンの元で博士課程の大学院生として研究を行いました。

Photoマクラングはバッタ Brachystola magna (図3)において性染色体を発見し、その研究を行っていました。このバッタは染色体が大きく、観察しやすいという細胞学研究上の利点がありました。

サットンはこの昆虫のオスの精子形成では、生殖細胞に特異的な細胞分裂=減数分裂の過程にある染色体が大きくはっきりと観察できることを見いだし、その観察を行いました。

彼はこの研究をウィルソンの研究室で発展させ、減数分裂における染色体の挙動はメンデルの法則に従うとする「染色体説」を提唱しました (4,5)。

もしメンデルの言うエレメントを母親からひとつ、父親からひとつ受け継ぐとすると、F1のもつエレメントは2つです。そうするとF2は4つ、F3は8つのエレメントをもつことになり、もしエレメントに物理的実体があるとするとすぐに膨大な数になって理論は破綻します。親が持つエレメントの数を常に同じ数にするためには、生殖細胞(動物の場合は精子と卵子)のエレメント数は親の半分でなければいけません。

サットンは精子形成過程において、この減数がおこなわれているのではないかと考え、顕微鏡で熱心に観察しました。皆さんも中高時代にムラサキツユクサ(図4)などで観察したことがあると思います。

Photo_2

この結果図5のように精子の染色体の数は体細胞の半分で、これは精子形成過程で減数分裂という特殊な細胞分裂が行われることを示しています。親細胞と同じ娘細胞が2個できる通常の体細胞分裂と違って、減数分裂では染色体の数が半分の娘細胞が4個できることがわかりました。

このことからサットンは体細胞はメンデルの言うエレメント=染色体を2セットずつ持っており、精子は1セットづつ持っていると考えると、それまで概念的な理論であったメンデルの法則が染色体という実体をともなってうまく説明できると考えました。簡単に言えばこれがサットンの「染色体説」です。サットン自身の記述を引用しておきましょう(4より)。
--------------------
I may finally call attention to the probability that the association of paternal and maternal chromosomes in pairs and their subsequent separation during the reducing division as indicated above may constitute the physical basis of the Mendelian law of heredity.
--------------------

Photo_4

きちんと述べると次のようになります。

1.メンデルの言うところの”要素=エレメント”は卵や精子(花粉)のような配偶子を通じて次世代に伝達される。卵と精子には均等に要素が含まれる。

2.細胞核の構成成分のうち、染色体は細胞分裂のとき娘細胞に均等に分配される。”要素”は卵と精子が均等にもっているはずなのに、卵の細胞質は巨大で、精子の細胞質は非常に乏しいことから、細胞質ではなく核(染色体)に要素が含まれると考えられる。

3.染色体は核の中で、メンデルの考えた”要素”という考え方に沿ったかたちで、対になって存在する(相同染色体) → ”要素”は染色体の上に乗っていることが示唆される。

4.卵や精子がつくられるときは、通常対になっているはずの染色体が分離し、そのうちの一つづつがランダムに選ばれて卵や精子に受け継がれる。たとえば体細胞がAaBbCcという要素をもっているとすると、卵や精子は、ABC, ABc, AbC, Abc, aBC, aBc, abC, abc の2の3乗通りの種類が考えられる。人の場合だと23組なので2の23乗通りの卵と精子が存在する。

5.染色体の数に比べて要素の数は非常に多いので、ひとつの染色体に多数の要素が相乗りしており、これらの相乗りしている要素についてはメンデルの独立の法則は成立しないと予測できる。

これは大発見であり、サットンは生物学を担う次代のホープと期待されました。しかし生来の熱血漢である彼は、あまり薄暗い実験室で顕微鏡を覗いてばかりというような生活は、自分の性格や生きていくポリシーと合わないと考えたのでしょう。大学院時代に歴史的論文を2編発表した後、研究をやめてカンザスにもどり外科医に転業します。そして第一次世界大戦のときにはヨーロッパに渡り、フランスで兵士の治療にあたっています。サットンの面目躍如というところです。

デンマークの遺伝学者ウィルヘルム・ヨハンセンは1909年にメンデルの「エレメント」を遺伝子(gene) と呼ぶよう提唱しました。そして形質という漠然とした概念をはっきりと「遺伝子型 genotype」と「表現型 phenotype」にわけて定義しました。

ヨーロッパから帰還してまもなく、サットンは虫垂炎にかかってしまいます。そしてこの手術が失敗に終わり、わずか39年の生涯を終えることになりました。もう少し生きていれば、間違いなく1901年からはじまったノーベル賞を受賞していたと思われるので、誠に残念な悲劇でした。彼の遺骸はサットン家の立派な霊廟に眠っています。

減数分裂について、より詳しい知識や顕微鏡写真に興味がある方はサイト(6~8)を参照されることをお勧めします。

参照:

1) 細胞説:https://ja.wikipedia.org/wiki/%E7%B4%B0%E8%83%9E%E8%AA%AC

2) ボヴェリ:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2247478/

3) 「The birth of the cell」 by Henry Harris, Yale University Press, 1999
https://www.amazon.com/Birth-Cell-Professor-Henry-Harris/dp/0300073844/ref=mt_hardcover?_encoding=UTF8&me=#reader_0300073844

4) W. S. Sutton. "On the morphology of the choromosome group in Brachystola magna" Biological Bulletin, 4:24-39, 1902.
公開されています--- http://dev.esp.org/foundations/genetics/classical/wss-02.pdf

5) W. S. Sutton. "Chromosomes in heredity" Biological Bulletin, 4:231-251, 1903.

6) 細胞分裂と細胞周期 http://www.tmd.ac.jp/artsci/biol/textbook/celldiv.htm

7) ムラサキツユクサを使った減数分裂の観察 http://www.aichi-c.ed.jp/contents/rika/koutou/seibutu/se22/gensuubunretu/gensuubunretu.html

8) 走査型電子顕微鏡による減数分裂の観察: 鈴木晶子、高橋正道 香川生物(Kagawa Seibutsu)(19):53-58,1992.   閲覧できます→AN00038146_19_53.pdf

|

2016年10月 4日 (火)

生物学茶話@渋めのダージリンはいかが36: メンデルの再発見

「メンデルの再発見」というのは科学史上の大事件ですが、「再発見」というのに少しひっかかります。昔の論文の追試をしたら、その通りの結果が出たとも言い換えられるわけで、そんな実験結果が次々と発表されたのが1900年という年だったのです。

中沢信午氏の著書「メンデル散策 遺伝子論の数奇な運命」(1)を読むと、メンデルの論文が発表された1866年から、再発見される1900年まで、誰もがメンデルの研究を忘れていたわけではないそうです。実際メンデルの論文はスウェーデン・ロシア・ドイツ・USAの科学者達によってい引用され、ブリタニカ百科事典第9版(1881~1895)にも紹介されているそうです。

気にしていた科学者はそこそこいたのですが、きっちり検証しようとした人は少なかったということでしょう。ド・フリースはケシの花色について、メンデルを意識した実験を行いました。そうすると花色の遺伝の様式がメンデルの法則にきっちり合っていることがわかり、さらに他の多くの例を追加して、メンデルの正しさを証明しました。

普通ならド・フリースがメンデル再発見の栄誉をひとりじめできたのかもしれませんが、彼はちょっとした失敗をしてしまいます。1900年に彼は研究結果をほぼ同時にフランス語とドイツ語の論文にして発表したのですが、そのフランス語の論文にメンデルの論文が引用されていなかったのです。後の検証によって、これは編集上のミスだったとされています。家族の不幸のためにきちんと校正をやってなかったらしいです。

しかしこのフランス語の論文を読んだチェルマクとコレンスはびっくりしました(彼らのところに送られてきたのはフランス語の論文でした)。彼らもメンデルの実験の追試をやっており、メンデルの正しさを確認していましたが、コレンスは追試なので発表するほどの価値はないと思って、データをしまっていたのです。まるでド・フリースが自分でメンデルの法則を発見したかのような論文の書き方に、彼らが激怒したのは理解できます。しかもチェルマクは1898年にド・フリースを訪問しており、そのときにド・フリースがメンデルの研究を知っていることを確認していました。コレンスはあわてて論文をまとめて発表しました。チェルマクもも同じ年に論文を発表しました。このような事情によって、この3人がメンデルの再発見者ということになっています(図1)。

Photo_2

メンデルの法則が動物にも適用できることをはじめて証明したのはカイコ研究の泰斗である外山亀太郎です。農学関係者は誰でも知っていることですが、意外に他分野の研究者には知られていません。若い頃は設備がなく自宅で研究していて、カイコのエサは窃盗で調達していたそうです。もうすこし設備があれば1900年までに研究が発表できて、あの3人に並んで再発見者になれたのにと悔やんでいたとのこと(1)。メンデルに関しては公益財団法人日本メンデル協会という組織があって、雑誌 Cytologia 刊行・講演会・展示会など活発に活動しています(3)。

メンデルの論文「雑種植物の研究」は、はやくも1928年に小泉丹によって翻訳されて岩波文庫で出版されています。私が持っているのは第14版ですが(図2左)、これはさすがに旧仮名遣いで読みにくいので、  岩槻 邦男 ・須原 凖平 によって再翻訳され1999年にやはり岩波文庫で再出版されました(図2右)。

Photo_3

Trofim_lysenko_portraitメンデルの理論はその後染色体説などによって補強され、遺伝の原理として認められましたが、1934年にルイセンコ(図3)が獲得形質の遺伝を主軸とした反メンデル理論を発表し(4)、これがスターリンや、第二次世界大戦後もフルシチョフ、毛沢東、金日成などによって支持され、特にソ連(現ロシア)ではメンデル支持者の投獄や処刑が行われるという、まさしく焚書坑儒のような悲惨な事態を招くことになりました。

ここまでひどくはありませんでしたが、欧米や日本でもメンデルに固執する学者は守旧派で、遺伝を説明する新しい理論を求めるのが新時代の科学者という風潮はひろがっていました。これを見事に粉砕したのがワトソンとクリックによるDNAの構造解明で、これによってメンデルの正当性に分子生物学による基盤が付与されることになりました。この点については後にふれることがあると思います。

参照:

1) 「メンデル散策 遺伝子論の数奇な運命」 中沢信午著 新日本新書 1998年刊

2) 外山亀太郎が興したカイコの遺伝学の今日的意義  嶋田透 第33回東京大学農学部公開セミナー
http://www.a.u-tokyo.ac.jp/seminar/33-yousisyu.pdf

3) 日本メンデル協会HP: http://square.umin.ac.jp/mendel/

4)こちら

|

生物学茶話@渋めのダージリンはいかが35: メンデルの法則

メンデルは純系のエンドウマメを作成し、それらを親(ペアレント)として交配しF1(雑種第1代)を作成しました。F1は花粉と胚珠(おしべとめしべ)からそれぞれ遺伝情報を伝えられているので、両者の情報がF1でどのように発現しているかは遺伝学の超基本です。

優劣の法則とは、花粉と胚珠から伝えられた遺伝情報は、平等にF1の形質に反映されるわけではなく、どちらかが優先的に発現し、片方は隠されることになるという法則です。図1のように紫色の花のマメと白色の花のマメを交配すると、F1はすべて紫色の花のマメになります。メンデルは親はそれぞれ AA、aa という情報を持っており、これらを交配するとF1はすべて Aとa という2種類のエレメント(メンデルは遺伝情報の単位をこう呼びました)を保有することになります。このときに a は隠され、Aが優先的に発現するわけです。遺伝学ではAをドミナント(優性)、a をリセッシヴ(劣性)といいます。この場合紫色の花がドミナント、白色の花がリセッシヴということになります。

Photo_7

ではAaのF1同士を交配させると、白色の花のマメはもう現れないのでしょうか。いえ実は25%の確率で現れるのです。このことを説明するのが分離の法則です。

Aとa という2種類のエレメントを持っているF1の配偶子(花粉または胚珠)はAを持つ可能性が50%、a を持つ可能性が50%としますと、これらを交配するとAA:25%、Aa(50%)、aa (25%)ということになり、白色の花のマメ(aa)が現れる確率が25%であることが説明できます(図2)。

もしF1の体内でAとa が混じり合ってしまうと、このようなことは起こりえません。すなわち a という形質はF1において隠されているだけで、そのままの状態で保管されていなければなりません。そうすればAとa がF2で分離して、紫色の花と白色の花の両者が発現することが可能となります。これが分離の法則です。

Photo_8

メンデルはエンドウマメの多くの形質について、分離の法則を確認する実験を行っており、その結果はほぼF2において優性形質の発現:劣性形質の発現=3:1であることが証明されました(図3)。どうしてぴったり3:1にならないのかという疑問があるかもしれませんが、それはひとつは統計上のゆらぎであり、いまひとつはサヤにマメがほとんど含まれていない場合や小さいマメが多数含まれている場合などに、それらのデータを棄却したことが影響していると思われます。実験に関係のない要因で異常が発生したと思われるときにデータを棄却するのは妥当なことだと思います。

Photo_3

最後に独立の法則ですが、これはランダムに2種類の形質に着目し、例えば(丸い種・しわの種)と(緑のさや・黄色のさや)という形質を取り上げた場合、丸い種のものは緑のさやになりやすい、あるいは黄色のさやになりやすいなどという傾向があるのか、それともランダムなのかということを検証してみたところ、図4のようにF2において両形質はお互いに影響を与えず、(丸い種・緑のさや):(丸い種・黄色のさや)黄色のバック:(しわの種・緑の種)赤い波線:(しわの種:黄色のさや)黄色のバックかつ赤い波線=9:3:3:1となることがわかりました。

Photo_4

メンデルの法則は物理学の法則のように、あらゆる事象にあまねく適用できるというものではなく、むしろ一定の法則が適用される場合を選んだという意味もあるので、物理学の法則とは少し違う意味合いがあります。非常に複雑そうに見える遺伝という現象のなかに、あるシンプルな法則に従う場合があることを示したことが、以後の遺伝現象研究の突破口になったという意味で重要なのです。

むしろメンデルの法則が適用できない場合は無数にあるわけですが、それぞれなぜ適用できないかということの探求が遺伝現象の本質を解明する手がかりとなります。生物の形質はひとつの遺伝子によって決まるという場合はむしろ少なく、複数の遺伝子がからんでいる場合が普通です。その場合当然メンデルの法則は単純には適用できません。

AAとAaでは、例えばAの実体が酵素であった場合、AAはAaの2倍酵素があるという場合もあるわけで(すなわち a は酵素が活性を失った変異だとしましょう)、2倍あれば赤い花、1倍ならピンクの花ということもあり得ます。この場合優劣の法則は成立しません。また生物は染色体を複数持っていますが、同じ染色体にのっかっている遺伝子は、当然F1でもF2でも一緒に行動するわけで、独立の法則は適用できません。メンデルの時代には染色体上に遺伝子が並んでいることなどわかっていなかったわけですから、独立の法則を適用できない場合があることは説明が不可能でした。

ヒトを例にとるとメンデルの法則を単純に適用できる形質を見つける方がむしろ大変で、例えば富士びたい(優性)、耳たぶがない(劣性、図5)、舌を巻いてU字型にできる(優性)などがあり、これらはひとつの遺伝子で決定される形質と思われます。

メンデルは研究結果をブルノ自然研究会会誌第4号pp4~37(1866)に発表しました(1)。タイトルは「植物雑種の研究(Einleitende Bemerkungen)」でした。この雑誌は500部印刷され、各地の大学や図書館に配布されていて、多くの学者は簡単にみることができたはずですが、全く注目されませんでした。実はその論文は数式が頻繁に出てくるような、当時の生物学者としては見慣れない書き方だったので、多くの生物学者は理解できないと思って読むのを放棄したのではないかと考えられています。

メンデルは修道院の院長に選挙で選ばれ多忙な中で、さまざまな生物の遺伝について自分の理論があてはまるかどうか精力的に研究を続けたのですが、エンドウマメほどきれいな結果が得られず、失意のうちにその生涯を終えました。高名な作曲家であるヤナーチェクはメンデルの修道院で聖歌隊の指揮をしており、メンデルの葬式にあたっては、ヤナーチェクの指揮で荘厳なミサが行われたそうです。

1) http://www.mendelweb.org/Mendel.plain.html

全体的に参考にした文献:

「メンデル散策 遺伝子論の数奇な運命」 中沢信午著 新日本新書 1998年刊

「コンドルは飛んでいる メンデルは跳んでいる」 こんどうしげる
http://www.fbs.osaka-u.ac.jp/labs/skondo/saibokogaku/mendel.html

|

生物学茶話@渋めのダージリンはいかが34: 19世紀のヨーロッパ

突然ですが、話は19世紀のヨーロッパに飛びます。現代生物学の基礎を築いたのは、19世紀のヨーロッパで活躍した科学者達です。図1の5人はその中でも卓越した業績を残し人々です。

Photo_6

英国のダーウィンは、生物は限られた資源を個体で争ううちに、生存に有利な変異を行った個体が子孫にその変異を伝えることによって進化がおこるという「自然選択説」を提唱し、生存中にこの理論は人々に受け入れられて、亡くなったときには国葬まで行われました。またパスツールは医学に貢献したほか、自然発生説の否定、牛乳を日持ちさせる方法の開発など社会に大きく貢献する業績があって、存命中から大変有名な科学者でした。

しかし残りの3人、ミーシャー・アルトマン・メンデルは全く無名で、論文もあまり注目されないまま亡くなりました。ダーウィンもメンデルの仕事を知っていたふしはあるのですが、獲得形質の遺伝というラマルク的な間違った理論を信奉していたくらいです。しかしDNAを発見したミーシャーとアルトマン、遺伝の理論を確立したメンデルは20世紀以降の生物学の根幹となる圧倒的に重要な業績を残したと言えます。

3人の業績について述べる前に、ここではパスツールとダーウィンに少しだけ寄り道したいと思います。パスツールの業績は多岐にわたっていますが、生物学の観点からみると、生命の自然発生説を否定したことが際立っています。生命はもちろん20億年以上前に自然発生したわけですが、19世紀の生物が自然発生するわけがありません。さすがにパスツールの時代には、ネズミがゴミ箱に自然発生するというような説は否定されていましたが、微生物は自然発生すると思われていました。パスツールはこれに反論するため、有名な「白鳥の首フラスコ」の実験を行いました(図2)。

Photo_2

フラスコの中に肉汁を入れて煮沸滅菌し、そのままフラスコの口をバーナーで熱して伸ばし、図のような湾曲した細い管にします。フラスコと外界は細い管でつながっていますが、このような状況でフラスコを放置しても肉汁は腐敗しませんでした。

自然発生派は煮沸滅菌した密閉容器で腐敗が発生しないのは、腐敗菌に必要な外気が供給されないからだと言っていたわけですが、この実験によって外界との通路が確保されていても腐敗はおこらないことが証明されました。

ところが白鳥の首を根元から折ったり、一番低い部分に無菌液をいれて(この状態だと左の入り口から液に落下菌がたまる)、しばらくしてからフラスコに流入させるとたちまち腐敗が誘導されました。つまり上から落下してくる菌がフラスコの中の液にはいると腐敗することがわかりました。菌は肉汁から自然発生するのではなく、空気中から落ちてきて増殖することが判明したわけです。

これで自然発生説は否定されたように見えましたが、肉汁の代わりに干し草の抽出液をいれると、煮沸滅菌しても枯草菌が自然発生してしまいました。ティンダルは枯草菌が芽胞という耐熱性の状態になる場合があるため、煮沸滅菌しても死ななかったということを解明して、ようやくこの問題に決着がつきました(1)。現在では完全に滅菌するためにはオートクレーヴという料理で使う圧力釜のような装置を使って、120°C、2気圧で15分以上処理します。

ダーウィンの自然選択説はいろいろ修正を加えられながらも、現在ではほぼすべての生物学者に認められた考え方です。しかし例えば2016年に米国の共和党大統領候補選挙に出馬して、そこそこ人気があったテッド・クルーズなどは進化論否定論者ですし、米国では進化論と同時に「インテリジェント・デザイン説=何らかの知的な存在がすべての生物を創造した」も学校で教えなければならないという勢力が健在で、激しい論争が続いています。現在(2016年)でも米国人の1/3強は進化論を否定しています(2)。

メンデルの法則もソ連(現ロシア)などでは20世紀になってからも激しい抵抗があり、ルイセンコ(1898年~1976年)は農業技師ミチューリン(1855年~1935年)の仕事(寒いロシアに適応した栽培品種をつくる研究、寒さに晒した種子は寒さに強い品種となり、それから採れる種子も寒さに強い品種になっている)を評価し、メンデルを否定しました。つまり、獲得形質の遺伝(ラマルク説)を支持したわけです。ルイセンコは政府にとりいりメンデル支持派を粛清・シベリア送りにしました。まさか自分の理論を支持したために処刑される人がでるとは、メンデルも墓の中で腰を抜かしたことでしょう(3)。

メンデルはチェコのブルノ市郊外の農家で生まれました。彼は大変苦学してオロモウツ大学付属の哲学学校に入学し、ここで宗教・ラテン語・自然科学などの勉強をして、宗教家・科学者としての基礎を身につけました(4)。オロモウツ大学は1576年創設で、日本では織田信長の時代です。いかにチェコの学問研究の土壌が古くから培われてきていたかということがわかります。哲学学校を卒業したメンデルは、1843年にブルノ修道院に修道士見習いとして就職します。日本は江戸時代でしたが、1839年にはすでにブルノ~ウィーン間に鉄道が敷設されていました。地名とその位置については図3を参照してください。これは高速道路地図ですが、チェコの西側(ボヘミア)の中心はプラハ、東側(モラヴィア)の中心はブルノであることがよくわかります。ブルノ修道院の現況は図4に示します。

Photo_5

Photo_4

当時の修道院は宗教の中心であるのみならず、科学技術の中心でもありました。1840年にはブルノ修道院が主催してドイツ農業技術会議という大規模な学会が開催されています。院長のナップはメンデルの優秀さを認め、修道院の植物園を管理し、ブルノ哲学学校の教授でもあったクラーツェルにつけて植物学の研究をやらせようとしました。これがメンデルの生物学者としてのキャリアのはじまりだったわけです。

クラーツェルは1848年までメンデルと共に、修道院の植物園を管理し、植物学の実験研究をやっていたそうです。しかしクラーツェルは当時チェコを支配していたウィーン政府からのチェコ独立を指導する反逆者として追放され、後に米国に渡って客死しますが、彼はダーウィンの「種の起源」を読んでいて信奉していたので、メンデルも当然影響を受けていたと思われます。つまりダーウィンはメンデルを知りませんでしたが、メンデルはダーウィンをよく知っていた可能性が高いということです。

メンデルは植物学のキャリアは積みましたが、決して優秀な修道士ではありませんでした。教員資格試験に落第し、看護師の仕事をさせると評判が悪いということで、困ったナップは彼をウィーン大学に留学させることにしました。

当時のウィーン大学は世界最高クラスの科学者が集まっていた大学で、メンデルは多くの知識や考え方を学ぶことができたのでしょう。特に植物生理学者のフランツ・ウンガーはメンデルの法則の基礎となるような考え方をすでに持っていて、メンデルに影響を与えたと思われます。またメンデルはカール・ゲルトナーの植物の交配に関する実験結果を熱心に勉強していたようです。ゲルトナーは交雑一代目は親のどちらかの性質を受け継ぎ、交雑二代目に、交雑に用いた元の植物のそれぞれの性質が現れることをすでに見いだしており、このことは後のメンデルの法則の基盤になる知見です。

メンデルはもともと記述的な生物学が得意ではなくて(だから教員資格試験に落第した)、物理学や数学が好きだったようです。ブルノに帰ったメンデルは遺伝という現象をなんとか数式で表現できないものかと考えて実験計画を練り上げました。メンデルはまず次のような仮説をたてました。

メンデルの仮説: 生物体は各種の遺伝子の組み合わせで出来ており、その組み合わせに対応して形質が発現する。この過程は何らかの数学的な法則に従う。

1)この仮説を検証するため、メンデルは遺伝的に均一な(つまり雑種ではない)エンドウマメを自家受粉を2年間繰り返して作成し、こうしてできた純系のエンドウマメを出発点として交配を行い、上記の仮説の数学的法則があるかないかを検討しました。

2)メンデルはエンドウマメの形質のなかから、解析しやすいものを慎重に選択しました。メンデルは遺伝子のはたらきが現れた表現形質の集合体が生物だと考えていました。

3)メンデルが偉大だったのは、ひとつの形質はひとつの遺伝子によって決定されるものではなく、ある遺伝子とその対立遺伝子の優劣や相互作用によって決定されると考えたことです。これはあとでわかったことですが、実際に遺伝子は多くの場合ペアとなる染色体にひとつづつ存在し、それらのはたらきによって形質が決定されます。

次回はメンデルの法則についてみていくことにしましょう。

参照:

1) こちら1

2) こちら2

3) こちら3

4) 「メンデル散策 遺伝子論の数奇な運命」 中沢信午著 新日本新書 1998年刊

|

生物学茶話@渋めのダージリンはいかが33: 私たち以外の人類

今回は人類の歴史について考えてみます。私たちはホモ・サピエンスという学名の1属1種の生物ですが、私たちがチンパンジーとの共通祖先から進化する過程で、多くの種が生まれては消えていったと考えられます。少なくとも数万年前までは私たちホモ・サピエンス=現生人類とは異なるホモ・ネアンデルターレンシス=ネアンデルタール人が生きていました。ネアンデルタール人が2~3万年前に絶滅して以来、人類は1属1種となりました。

スミソニアン研究所がアップしている人類系統図(1)を簡略化して示したのが図1です。これによると人類は4つのグループに大別され、私たちはホモ・グループに属するとされています。他の3つのグループは100万年前以前に絶滅したため、最近100万年の間に生きていた人類はすべてホモ・グループ(ホモ属)ということになります。

Photo

ネアンデルタール人とわれわれ現生人類はおそらく共通の祖先を持つ近縁種だと考えられます。ネアンデルタール人の遺伝子はかなり詳しく調べられていて(2,3)、現生人類とは80万年前に分岐したとされています。分岐はアフリカで行われましたが、ネアンデルタール人の祖先は40~30万年前にアフリカを出てヨーロッパで繁栄しました。彼らの化石は主として南欧・南ドイツ・東欧の南部・中東から発掘されています。

ネアンデルタール人と現生人類の頭蓋骨を比較すると(図2)、まずネアンデルタール人の頭が前後に長いということがわかります。もうひとつは眉の部分が張り出し、眼窩上隆起を形成しているということです。このことで思い出すのはキアヌ・リーブスとサンドラ・ブロック共演の映画「スピード」で、バス運転手を演じていたホーソーン・ジェイムスです。彼の顔が画面に登場したとき、「うぁネアンデルタール人じゃないか」とのけぞりました(4)。

Photo_2_2

図3が復顔されたネアンデルタール人です(ウィキペディアより)。もちろん顔はひとそれぞれですから、こんな人もいたんだなということですが。

Photo_3_2現生人類=ホモ・サピエンスは25万年前に東アフリカで誕生したとされていますが、彼らはネアンデルタール人よりかなり遅れて10万年前くらいにヨーロッパや中東に進出したようです。

その後ネアンデルタール人と現生人類の祖先、そしてシベリアに住んでいたデニソワ人が小規模ながらも混血して、われわれ現在の現生人類が生まれたようです。デニソワ人はネアンデルタール人から分岐した人類であるとされています。

現在のメラネシア人はデニソワ人固有の遺伝子を4~6%保有していることがわかっています。また現生人類の遺伝子を持ったネアンデルタール人もロシアとモンゴルの国境付近で発見されています。

これはひとつの学説ですが、ネアンデルタール人が絶滅したのはイタリアの火山の噴火のためかもしれません。人口が激減して、サピエンスとの交配が可能なら、次第にネアンデルタール人の血が薄まってしまったと考えられます。

すなわち現生人類・ネアンデルタール人・デニソワ人は別種であるにしても、交配して生殖能力がある混血の子孫をつくることができたということです。あるいはこれらの人類はすべてホモ・サピエンスであり、亜種レベルでの違いとすべきであるという主張も可能です。

21世紀になってからもう1種の人類、ホモ・フローレシエンシス=フローレス人がインドネシアのフローレス島の洞窟で発見されました(図4)。当初は1万2000年前まで生きていたとされていましたが、現在では5万年くらい前まで生きていたということになっています(5、6)。考古学の世界は Nature のような雑誌に投稿された論文でも、すぐにひっくり返ってしまいます。ホモ・サピエンスがフローレス島に上陸したのが5万年前とされているので、ホモ・フローレシエンシスは現生人類=ホモ・サピエンスに滅ぼされたという可能性が高いということになりました。

Photo_4_2

フローレス人は骨の構造が現生人類とは大きく異なるので、体が小さい(大人でも身長1mくらい)のは小人症などではなくて、ホモ・ハビリスが島嶼化によって小型化したと考えられています。島嶼化というのは、島に隔離された生物は食糧が乏しいことと、天敵がいないことで体が小さくなる傾向があるというという動物学の概念です。一方で国立科学博物館の海部陽介氏らは、ホモ・エレクトゥスの亜種であるジャワ原人がフローレス人の祖先であると主張しています(7、8)。

いずれにしてもフローレス人も洗練された石器や火を使っていたらしいので、彼らなりに独自の進化を遂げていたと思われます。フローレス人の復元像は国立科学博物館で見学できるそうです(私はまだ見ていません)。

参照:

1) http://humanorigins.si.edu/evidence/human-family-tree

2) K. Prufer et al., The complete genome sequence of a Neanderthal from the Altai Mountains. Nature  505, 43-49 (2014)

3) http://www.nytimes.com/2013/12/19/science/toe-fossil-provides-complete-neanderthal-genome.html?_r=0

4) こちら

5) http://natgeo.nikkeibp.co.jp/atcl/news/16/033100119/

6) スミソニアン研究所のサイト http://humanorigins.si.edu/evidence/human-fossils/species/homo-floresiensis

7) http://natgeo.nikkeibp.co.jp/nng/article/20130529/352350/

8) http://natgeo.nikkeibp.co.jp/nng/article/20130530/352490/

|

生物学茶話@渋めのダージリンはいかが32: 現代の大絶滅

800pxlacanja_burn生物学茶話では、ここのところずっと生物の歴史を俯瞰してきました。そのなかで、ほとんどの生物が死滅してしまうという危機が何度か地球に訪れたということを見てきました。代表的なのはペルム紀末と白亜紀末の大絶滅ですが、どうやら現在の私たちはそれら以上の大絶滅のまっただ中にいるようです。

現在地球上では、ひかえめにみて毎日100種を超える生物が絶滅しています。絶滅というのは、その種に属する個体がすべて死ぬということですから、半端じゃありません。例えば広島に原爆が投下されたときにも、広島市民全員が死亡したわけじゃありません。それよりも何千・何万倍もおぞましいことが毎日おこっているというのが現代です。

種が絶滅したとすると、その種に食べられていた生物が異常発生してしまったり、その種を主食としていた生物が道連れ絶滅したりする可能性があり、どんな人間にとっての不都合が発生するかは計り知れません。

Jurriaan M. De Vos博士らの試算によると、現代の種消滅速度はバックグラウンドの約1000倍で、このままいくと将来10000倍までその速度があがるそうです。

<<Estimating the normal background rate of species extinction>>
Jurriaan M. De Vos et al
Conservation Biology, Volume 29, Issue 2, pages 452-462, April 2015
http://onlinelibrary.wiley.com/doi/10.1111/cobi.12380/abstract;jsessionid=78F8B9C7E39C7F662636CB049B9D4E71.f02t01

生物の大絶滅によって、自然の秩序が失われ、地球の自然浄化作用も失われて、地球環境は加速度的に悪化し、私たちが住めなくなるようなひどい状態が来るのはここ100年以内の話しかもしれません。

レッドブックに記載された生物を救うことは大事ですが、最も重要なことではありません。種の異常な速度による消滅は地球環境悪化のサインであり、そのことに気がついて、その消滅速度を遅くすることが重要です。ではどうすれば、遅くできるのか?

今地球で普遍的に行われている資本主義は、投資したお金が増えて返ってくることを前提としています。すなわち生産活動の拡大が必須となります。このために人も企業も国も努力するわけです。それを阻害しようとする勢力は排除されます。これをやっている限り、森林伐採(写真 ウィキペディアより)・自然破壊・環境汚染は避けられず、地球によって人類は報復されます。その報復が「適度」なうちに気がついてやめればいいのですが、このままでは人類はきっと最後まで資本主義をやめません。結局無数の生物種を道連れにして、人類は消滅するのでしょうか?

私はCO2排出の協定なんて、極地の氷が溶けてメタンガスが出始めた今となっては意味がないとは言いませんが、手遅れの可能性が高いとおもいます。とりあえず企業の生産活動の拡大を制限する国際的ルールを定めるくらいのことはやらないとダメでしょう。

まず<<世界中すべての株式市場を閉鎖する>>ということからはじめたらどうでしょうか。これによって企業による生産活動の拡大はかなり防げると思います。これすら中国や米国の反対でできないのなら、もうお手上げです。

そうなったら、大部分の人類が滅びても自分たちだけは生き残る・・・という方策を探すしかありません。ちょっとした大雨による北海道や東北のインフラ破壊を修復するめどがたたない日本政府に、そんな芸当ができるでしょうか? ダメだろうね。要するに彼らは企業活動を拡大するために死にものぐるいになっているので、自分たちが生物大絶滅時代を加速して自殺行為を行っていることなど、全く頭の片隅にもないのです。

キーポイントはマスコミです。「景気をよくしろ」とか「株価をあげよう」とか「生産活動を拡大しよう」とかの方向でマスコミが発信している限り、資本主義という<<生産活動が拡大しないとなりたたない>>制度を廃止することはできません。これは日本だけやっても意味ないので、世界レベルでのマスコミの発信が必要になります。そのためには、まず新聞記者やTVプロデューサーと環境問題専門家による国際会議を行うことが必要でしょうね。

<<米国自然史博物館からの警告>>

NATIONAL SURVEY REVEALS BIODIVERSITY CRISIS - SCIENTIFIC EXPERTS BELIEVE WE ARE IN MIDST OF FASTEST MASS EXTINCTION IN EARTH'S HISTORY
http://web.archive.org/web/20070607101209/http://www.amnh.org/museum/press/feature/biofact.html

1)我々は生物大絶滅時代のまっただ中にいます。このことは多くの生物学者が認めていることです。

2)生物多様性の消滅によって、地球が本来もっている空気や水の自浄作用が失われることになります。

3)生物大絶滅は次の世紀における人類の生存を危うくするほどのものなのに、多くの人々はそのことに気がついていない。

<<企業活動と生物多様性>>

ネスレ社がキットカットをつくるために大規模な森林破壊を行ったことで、バッシングを受けましたが、このサイトはそれだけでなく、多方面から生物多様性について分析しています。

http://agrinext.jp/archive/tayousei/chapter1/
http://agrinext.jp/archive/tayousei/chapter1/page02.html
http://agrinext.jp/archive/tayousei/chapter1/page03.html

<<Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis>>
by Alexander M. Dunhill & Matthew A. Wills
Nature Communications 6, Article number: 7980 (2015)

http://www.nature.com/articles/ncomms8980

著者たちは三畳紀末の大絶滅に注目しています。この大絶滅は火山の大噴火によって発生したのですが、最初は火山周辺の生物が絶滅しましたが、そのうち地球全体の生物が影響を受け、多くの種が失われました。このときの状況が現在と類似していると著者は警告しています。

<<ミツバチの減少は何をもたらすか >>

多くの植物は、ミツバチによって花粉を運んでもらっています。ミツバチが死滅すると、困るのは人間です。

http://matome.naver.jp/odai/2141000414380297701
http://cosmo-world.seesaa.net/article/127471528.html
http://threebirch.exblog.jp/25737158/

|

2016年9月29日 (木)

生物学茶話@渋めのダージリンはいかが31: 古第三紀以降の生物2 サル

サル目の別称に霊長目という呼び方がありますが。これはサルを生物の頂点と考える思想が根幹にあると思われるので、ダーウィン以降の生物学者にとっては不本意な命名でしょう。つまり今生きている生物はすべて、生命の起源から命を連綿と続かせている者達で、すべて同じ長さの歴史を持っているという意味ではそれぞれ同一線上にあるという見方にたつと、霊長という名は排除すべきなのでしょう。というわけで、ここではサル目という呼称を採用します。まずサル目の進化についての分岐図(図1)を示します。

Photo

DNAの解析などからサル目の生物は白亜紀から存在したとされていますが(図1および文献1)、実際にサルと非常に近いとされるプルガトリウス(図2、ウィキペディアより)という生物の化石が、6600万年前の白亜紀地層から発見されています。プルガトリウスは体長10cmくらいの一見トガリネズミのような生物ですが、歯の種類と配列(上下顎骨それぞれに6本の門歯、2本の犬歯、8本の小臼歯、6本の大臼歯 = 全部で44本の歯)がサルと同じなので、サル目の始祖と考えられています(2)。

Photo_2

また5500万年前の地層からは、メガネザルと極めて近いサルの化石が発見されています(3、4)。この生物はオマキザル上科に属するマーモセットの特徴も兼ね備えていることから、メガネザルのグループと、ヒトなどのグループ(オマキザル・オナガザル・テナガザル・ヒト)の分岐点に位置する生物と考えられます(図1参照)。

さて図1をみると、サルはもっともおおざっぱに分けるとヒト・メガネザル系とキツネザル・ロリス系に分かれます。キツネザル・ロリス系の共通祖先は白亜紀に他のサルと分岐したと考えられています。彼らの共通祖先として、化石生物であるアダピ形類(5)が知られています。キツネザル・ロリス系のグループを曲鼻猿類と呼称することもあります。曲鼻とは鼻腔が屈曲して鼻孔が左右に離れて外側を向いていることを意味します。

キツネザルは現在マダガスカル島にしか住んでいませんが、ロリスは世界各地に分布しています。ワオキツネザルの写真を貼っておきます(図3 市川動物園で撮影)。ワオキツネザルの顔をみていると、プルガトリウスがサルからかけはなれているとも言えないような気がしてきます。

アイアイも曲鼻猿類のひとつでマダガスカル島の特産です。絶滅が危惧されていますが上野動物園の小獣館で見ることができます。完全空調でライトコントロールもされていてかなり元気です。ただし非常に暗いところで飼育されているので、写真撮影は困難です。キツネザルは競合種や天敵が少ないことから大繁栄していたようですが、人間が上陸してからは地上から追い払われ、絶滅が危惧される状態にまで追い詰められました。

Photo_10

曲鼻猿類は私たちがイメージする「猿」とはやや異なる風貌をしていて、最近まで猿とはされていなかったものも含まれています。また以前はメガネザルもキツネザルやロリスのグループに入れられていましたが、最近の分子生物学的研究の成果によって、オマキザルやヒトなど真猿類に近いことが明らかになりました。

メガネザル類と私たち真猿類を合わせて直鼻類と呼称します。直鼻とは鼻腔がまっすぐで鼻孔が左右そろって前方ないし下方を向いているという意味です。曲鼻猿類・直鼻猿類ともに、分類学上は亜目ということになります。

フィリピンメガネザル(図4 ウィキペディアより)は体長わずか12cm程度の世界最小の猿です。「スターウォーズ」に出てくるヨーダのモデルといわれています。手の指が妙に人間ぽい感じです。古第三紀にはいってすぐという非常に古い時代(約6000万年前)に他の直鼻猿類と分岐したので(図1)、風貌はむしろ曲鼻猿類に似ています。夜行性です。

絶滅危惧種ですが、セブ島近郊のボホール島で観光名物にされていて、ツァーもあるようです。ただそれで得たお金で保護されているというので致し方ありません。

Photo_4再び図1をみますと、4000万年前を少し過ぎたあたりでオマキザル上科が分岐しています。新世界猿とも呼ばれるグループで、主に南米に分布します。サキ(図5 シロガオサキ フリーフォトサイト「足なり」より)、クモザル、オマキザルなどがこのグループに所属します。

オマキザル科には、マーモセット、タマリン、オマキザル、リスザルなどが所属します。特にオマキザル属のサルは、チンパンジーにも匹敵するくらい知能が高いと考えられています。道具を使ったり、絵を描いたりすることもできるそうです(6)。

ナキガオオマキザル(7)は、5才の少女(マリーナ・チャップマン)を仲間の一員として迎え、彼女に教育をほどこして共同生活をしていた記録があります(8)。この本は私も購入して読むことにしました。

Photo_11

オマキザル上科と対照的にオナガザル上科のサルはアジア・アフリカに分布していて、旧世界猿とも呼ばれます。おなじみのニホンザル(図6)もオナガザルのグループに所属しています。尻尾が短いじゃないかといわれるかもしれませんが、それは彼らが北限の猿と言われているように寒い地域で生活するうちに適応したと思われます。長くてあまり使わない尻尾はしもやけになってしまうかもしれません。

オナガザルはニホンザル・マンドリル・マントヒヒなどオナガザル亜科のグループと、テングザル・キンシコウ・コロブスなどのコロブス亜科に分かれています。オナガザル上科とヒト上科(ヒト科とテナガザル科)が分岐したのが、2600万年前あたりとされています。

Photo_12

最後に残ったヒト上科はテナガザル科とヒト科からなっています。ヒト上科に属するサルを類人猿と呼ぶこともあります。テナガザル科とヒト科が分岐したのは2000万年前あたりとされています(9)。テナガザルは東南アジアに棲息する樹上性・昼行性のサルで、上野動物園などで見ることができますが、野生のものは絶滅危惧種が多い状態となっています。

ヒト科の現存生物はオランウータン・ゴリラ・チンパンジー・ボノボ・ヒトです。これらの系統分岐図を図7に示します。

Photo_7

オランウータンは他のヒト科グループと1300万年前くらいに分岐しました。オランウータン属はアジアに棲息するわずか2種(ボルネオオランウータンとスマトラオランウータン)からなります。ゴリラやチンパンジーと違って、手でこぶしを作って歩くナックルウォークをしません。樹上生活者ですが、地上を歩くこともあり、その時には指の腹側を地面に接触させて歩きます。

市川動物園でオランウータンの母子を観察したことがありますが、子供が段ボールをちぎって頭に乗せるという遊びを、じっと楽しむように見つめている母親が印象的でした(図8)。母子はずっと一緒にいて、とても親密な感じです(図9)。

Photo_13

Photo_14

ゴリラはヒト・チンパンジーのグループと700万年前くらいに分岐し、現在はアフリカに子孫を残しています。以前は1種だけだと考えられていましたが、(西ローランドゴリラ+クロスリバーゴリラ)ともうひとつのグループ(東ローランドゴリラ+マウンテンゴリラ)の遺伝的差違が大きいことから2種となっているようです(ウィキペディア、10)。ゴリラは地上に降りたサルで、しかも昼行性です。地上に降りた以上、猛獣に襲われることもあり得るわけで、実際ヒョウに食べられたという例も報告されています。

チンパンジーもアフリカのみに棲息する生物で、1属2種(チンパンジーとボノボ)です。樹上生活者で昼行性ですが、ボノボはかなり地上でも活動するようです。チンパンジーがヒトから分岐したのは、ミトコンドリアDNAの全塩基配列解析から487万年前±23万年とされています(11)。言い換えれば、このときから、ヒトという属あるいは種の歴史が始まったとも言えます。600-700万年前に生きていたとされるサヘラントロプス(トゥーマイ)は、年代から言ってヒト属ではありません。むしろヒトとチンパンジーの共通祖先かもしれません。

ボノボは非常に高い知性をもっており、ヒトと最も近い生物だと言えるでしょう。何しろパックマンでちゃんと遊べるそうですから(12)。ボノボはチンパンジーとは性行動が非常に異なるようです(13)。また争いを好まない平和的な生物だそうで、この点ではヒトよりも進化しているのかもしれません。

最近何万年かの間にヒトは大発展して、現在では環境破壊によって他のサルを絶滅に追いやっているような状況ですが、それまでの時代、ヒト科の生物はマイナーな存在だったと言えます。だいたいオランウータン・ゴリラ・チンパンジ-・ヒトすべて種の数が少なすぎます。それぞれ1属1種か2種という地味さで、これでは世界各地の様々な環境に適応して、各地で繁栄するというわけにはいかないでしょう。例えばオナガザル上科の生物の方が圧倒的に種も頭数も多くて、優位に立っていたと思われます。ヒト科の生物の骨が稀少なのは、それなりに理由があるわけです。ヒトが農業や工業を発展させて大繁栄したというのは、地球の歴史の中で非常に特殊な出来事です。

参照:

1) 「系統樹をさかのぼって見えてくる進化の歴史」 長谷川政美著 ベレ出版 (2014)

2) http://www.seibutsushi.net/blog/2007/04/204.html

3) http://www.cnn.co.jp/fringe/35033430.html

4) The oldest known primate skeleton and early haplorhine evolution. Xijun Ni et al., Nature 498, 60–64 (2013)

5) https://en.wikipedia.org/wiki/Adapiformes

6) https://ja.wikipedia.org/wiki/%E3%82%AA%E3%83%9E%E3%82%AD%E3%82%B6%E3%83%AB%E5%B1%9E

7) https://www.youtube.com/watch?v=DFV49Ko0o3k

8) 「失われた名前 サルとともに生きた少女の真実の物語」 マリーナ・チャップマン著 宝木多万紀訳 駒草出版 (2013)

9) 「人類歴史年表」 http://www.eonet.ne.jp/~libell/sinkakeitouzu.html

10) 「ヒト科の出現 中新世におけるヒト上科の展開」 國松豊 Journal of Geography 111(6) 798-815 (2002) : https://www.jstage.jst.go.jp/article/jgeography1889/111/6/111_6_798/_pdf

11) https://www.nig.ac.jp/museum/evolution/02_c2.html

12) https://www.youtube.com/watch?v=Rh8gfIcjQNY

13) http://bbs.jinruisi.net/blog/2013/06/1147.html

|

生物学茶話@渋めのダージリンはいかが30: 古第三紀以降の生物1 哺乳類・犬・猫

白亜紀に続く時代は古第三紀です。古第三紀は6600万年前から2300万年前までの時期です。白亜紀末におこった巨大隕石衝突による大災害で鳥類以外の恐竜は死滅し、一方で哺乳類はかなりの種が生き残りました。

やぶにらみ生物論29で、哺乳類の母乳による育児や雑食性について述べましたが、彼らが生き残った理由には、他にもペルム紀大絶滅の時と同様、穴居生活を習慣とする者がかなりいたことや、冬眠・夏眠ができる能力がある者が多かったことが決め手になったのかもしれません。また穴にもぐることと、夏眠・冬眠することとは密接に関連しています。

哺乳類や他の生物についても数千万年も経過した化石のDNAは系統進化の研究に利用できませんが、哺乳類や鳥類の場合、化石しかない絶滅生物群と違って、現在も多数の種が生きているという大きなメリットがあります。この点が古第三紀以降とそれまでの違いです。

現存生物のDNAやタンパク質を比較することによって、それらの姻戚関係の遠近が推定されますし、グループ分けも可能です。またいつそのグループが分岐したのかについても推定できます。もちろん哺乳類・鳥類以外の現存生物、魚類・昆虫・爬虫類・植物などについても同様です。

大絶滅によって鳥類以外の恐竜が絶滅したことは、生き残った哺乳類にとって望外の幸運でした。1億数千万年にわたって恐竜によって閉め出されてきた地上のニッチの大部分がフリーになったわけですから、あっという間にそれらは哺乳類、特に先進的な有胎盤類によって埋められました。樹上生活、穴居生活、夜行性などの条件付きで生きてきた哺乳類が昼間の地上を闊歩し始めたというわけです。ウィンタテリウムやピロテリウムなどの大型草食獣が草食恐竜に代わって出現しました。ネコ・イヌの祖先である肉食獣や絶滅したアンドリュウサルクスなどもいました。私たちの祖先であるサルは相変わらず樹上で生活していました。

図1の進化系統図は M.S.Springer らがまとめたものですが(1)、多くの研究者の研究成果が含まれています。普通の進化系統図と違うのは絶対時系列で分岐点が示されていることです。翻訳した上に簡略化したので、詳しい情報を得たい方は原著(1)をご覧下さい。

Photo_3

ここでちょっと驚くのは霊長類がすでに白亜紀に棲息していて、しかもメガネザル・キツネザル系のグループと、それ以外のグループに分岐していたという点です。霊長類についての詳細は稿をあらためて述べたいと思いますが、白亜紀の終わり頃には、かなりバラエティーに富んだ哺乳類が棲息していたことが示されています。そしてその多くのグループが、白亜紀末の大絶滅を乗り越えて、現在まで命をつないでいるのです。

しかし数多い哺乳類のすべてにここで言及するのは無理なので、犬猫類(本稿)と人猿類(次稿)については少し詳しく、その他は簡潔に述べたいと思います。

図1によると犬と猫が意外に近縁の生物であることがわかります。彼らは第三紀にはいってかなり経過してから分岐しました。

では犬と猫の共通の祖先はどんな生物だったのでしょうか? その候補はミアキス・ヴルパヴス・ドルマーロキオンなどですが、生きた化石のような生物がマダガスカルにいます。それはフォッサです(図2 ウィキペディアより 以下同)。マダガスカルは白亜紀に大陸から分離して孤島になったので、当時の動物がそのままに近い形で生き残っていたとしても不思議ではありません。

Photo_2

図2をみるとちょっと感動します。体長が60~80cmのこの動物は、容姿が犬のようでもあり、猫のようでもあります。鼻はイヌっぽい感じですね。手足が頑丈に見えます。肉食獣で、樹上に住み、夜行性だそうですが、子供は地上の穴などで育てていたようです。上野動物園で実物を見ることができます。絶滅危惧種なので、無事に生き延びることを祈りたいと思います。

白亜紀には地上はほぼ恐竜に支配されていたので、哺乳類は昼間は樹上か穴で生活し、必要なら夜に地上を徘徊してエサを探すという生活をしていたのでしょう。上野動物園の小獣館地下には、当時を想像させる小型の夜行性哺乳類が飼育されており、その薄暗がりでの敏捷性には驚かされます。フォッサの生態についてはウェブサイト(2)に動画があります。彼らがいかに上手に樹上を移動するかがよくわかります。

恐竜は基本的に2足歩行であり、4足歩行する恐竜は大型草食動物がほとんどだったため、彼らにとって樹上での生活は困難だったと思われます。鳥類は歯を失ったうえに、飛翔に最適化した軽量な体に進化したため、ある程度体重のある哺乳類なら襲われる可能性は少なかったのでしょう。子供は授乳で育てるので、親がある程度守ることができます。ミーアキャットなど集団生活をする哺乳類は、見張りをおくこともできます。

犬と猫が分岐した後、ネコの系統の方にはニムラブス科(ネコ科と近縁ですが、同じではありません)の様々な生物が登場します。ディニクティスの図を貼っておきましょう(図3 Robert Bruce Horsfall の復元 ウィキペディアより)。ヒョウのような生物です。犬歯(牙)が長いので、サーベルタイガーのようでもあります。ニムラブスとネコは耳の構造に大きな違いがあるとされています。しかしその点と犬歯の長さを除外すれば、非常に現在のネコ科の生物と似ていると言えます。

Photo_3

イヌと分かれたあと、最初期のネコ科の生物にはメタイルルスというピューマのような生物がいます(3)。これははやくもサーベルタイガーのような犬歯を持っており、これが進化とともにどんどん大きくなって、一般にも良く知られているスミロドンのようになったと思われます。ただしメタイルルスがスミロドンの直接の祖先とは考えられていません。ツシマヤマネコがメタイルルスの子孫だという説はあるようです。

スミロドンの犬歯はあまりにも巨大で、却って邪魔だと思いますが、これをどのように使ったのかについては議論があって、まだ定まってないそうです。私の想像では、スミロドン系のネコは中小型のすばしっこい動物を捕らえるほどの俊敏さ、またはスピードがなく、また集団で狩りをするタイプでもなかったので、比較的大型の草食獣にいどみかかるしかなかったため、犬歯が異常に発達したのではないかと思います。

スミロドンのグループは絶滅しましたが、ネコファミリーの中でもうひとつの犬歯を巨大化させなかったグループは、現在も図4のようにトラ・ライオン・ジャガー・カラカル・オセロット・家庭猫・ヤマネコ・チータ・ピューマなど多くの種が生きています。

Photo_4

さて、では最初期のイヌはどのような生物だったのでしょうか? 土屋氏の著書(4)にしたがって紹介します。最初期のイヌを代表する生物としてヘスペロキオンが知られています(図5 Robert Bruce Horsfall の復元 ウィキペディアより)。まだイヌというよりシベット猫(5)に似ています。ヘスペロキオンは後ろ足の指が5本あり、現在の飼い犬の後肢の指は4本なので、それなりに原始的な生き物ではありました。糞の化石を調べたところ齧歯類(ネズミなど)を食べていたようで、俊敏なハンターであったことが想像できます。

Photo_5

とりあえずイヌ科の系統図を示しておきます(図6)。ヘスペロキオンの次に出現したレプトキオンは、どちらかといえばキツネに近い生物のように思えます(6)。しかしこの生物の仲間の子孫から、キツネ・タヌキのグループとオオカミ・イヌのグループが分岐したと考えられています。

Photo_6

オオカミ・イヌのグループの中にもキツネという名前の付いた生物がいます。クルペオキツネなどはがそうですが、彼らはキツネよりひとまわり大きな体で、DNAの研究によって、キツネ・タヌキのグループではなく、オオカミ・イヌのグループに属しているとされています(図6)。図7をみると、風貌はコヨーテ(図8)に似ている感じです。

Photo_7

Photo_8

見た目からすると、コロコロした体型で泳ぎが得意なヤブイヌと、チータのように草原を快速で疾走するタテガミオオカミが近縁だというのは意外ですが、DNAはウソをつかないのでしかたありません。ヤブイヌは埼玉こども動物自然公園やよこはまズーラシア動物園で見ることができるそうです(7)。タテガミオオカミは上野動物園にいます。先日見に行ったときは、ずっと寝ていたため本領発揮の姿はみられませんでした。残念。

参考文献とリンク先

1) M.S. Springer et al. The historical biogeography of mammalia.  Phil. Trans. R. Soc. B, vol. 366, pp.2478-2502 (2011)
2) http://www.alpacapacas.com/archives/845
3) https://www.youtube.com/watch?v=M72BwXh0Si8
4) 土屋健著 「古第三紀・新第三紀・第四紀の生物」上 技術評論社 (2016)
5) https://en.wikipedia.org/wiki/Civet
6) http://dinosaurs.about.com/od/mesozoicmammals/p/Leptocyon.htm
7) http://matome.naver.jp/odai/2142294579556745401

|

2016年9月28日 (水)

生物学茶話@渋めのダージリンはいかが29: 白亜紀の生物4

「白亜紀の生物」の最後に、恐竜・鳥類・哺乳類以外の生物について概観したいと思います。白亜紀の海の生物の化石は、レバノンから数多く発掘されるそうです。当時のレバノンは温暖な内海で、多くの魚類やその他の海の生物が数多く暮らしていたようです。「Memory of time」 のサイト(1,2)や本のPDF(3)に、美しい化石の写真が数多く展示されています。

魚類としてはエイの仲間の軟骨魚類、バラエティに富んだ条鰭類のほか、肉鰭類の化石も出ています。キクロバティス(図1)というエイの化石が売られていました(4)。大変珍しい9500万年前のタコの化石もみつかっています(5)。白亜紀後期の超巨大なイカとタコの化石は北海道羽幌町からも出土しています(6)。オウムガイやアンモナイトも健在。

1白亜紀には浅海底の珊瑚礁が奇妙な二枚貝に駆逐されるという事件がおこりました。その二枚貝は厚歯二枚貝という動物の角のような形の不思議な貝です(7)。

海洋の大型動物としては首長竜や魚竜も健在でしたが、魚竜は白亜紀の半ばで絶滅してしまいます。代わってモササウルスという海棲爬虫類が登場します(図2)。体長15m前後の巨大生物で、凶暴な肉食生物だったようです。モササウルスは恐竜ではなく、現生生物ではオオトカゲに近縁のようです。

2

恐竜全盛時代にも、ワニは堂々と水辺のテリトリーを確保していたようです。ヘビはおそらく白亜紀に誕生したと考えられています(ジュラ紀の化石がない)。カメが海洋に進出したのも白亜紀のようです(8)。空には有名な巨大翼竜のプテラノドン(図3)が飛んでいましたが、翼竜は次第に鳥類にニッチを奪われていき、白亜紀末期にはごくわずかしかいなくなっていたようです。

3

ジュラ紀末期か白亜紀初期に被子植物が登場して、地球は花が咲く惑星となりました。しかしその美しい地球に、突然の悲劇がおとずれました。それは小惑星が6550万年前にユカタン半島に激突したことにはじまります。

激突したときにできたクレーターは現在でも確認できます(9,図4)。この衝突を契機として世界各地に地層の境界が確認され。それはK-T境界と呼ばれています。衝突時のエネルギーは広島型原爆の10億倍。津波の高さは300メートルという想像を絶する規模の災害で、カンブリア紀以来では2番目の規模の生物大絶滅が発生しました(最大規模はペルム紀末の大絶滅)。

Photo

ルイス・W・アルバレツらは1980年にK-T境界(白亜紀と第三紀の境界)に、地球表層にはほとんどないイリジウムが多量に含まれていることから、小惑星の衝突による「衝突の冬」説を提唱しました(9)。

衝突地点がユカタン半島だということを発見したのは、ボホールとセイツで、1990年のことでした。この説は現在多くの研究者によって認められているそうです。この衝突地点には硫黄が多く含まれた岩石があり、衝突で粉砕されて毒や酸性雨として地球全体にふりそそいだほか、エアロゾルとして太陽光を遮断しました。

この災害によって、鳥類以外の恐竜、翼竜、首長竜、モササウルス、アンモナイト、厚歯二枚貝などは地球から姿を消しました。生き残った生物がなぜ生き残ったかというのは謎です。体重25kg以上の生物は全滅したという指摘があります。エサを多量に必要とする生物が不利だということは理解できます。

多くの被子植物はこの災害で数を減らし、一時的にシダ類に取って代わられたことからも、まず植物食の生物が餓死し、そしてそれらをエサとしていた肉食獣も餓死したのでしょう。しかし体重25kg以下の生物が無事だったわけではありません。ほとんどが小型だった哺乳類も35%の種を失いました(10)。哺乳類が生き延びたのは、その雑食性と母乳で子供を育てられたことが有利だったのかもしれません。

ワニやカメは長期間エサがなくても生きられるという特技があり、これは災害時の生存には有利だったのでしょう。実際あまりダメージは受けませんでした。また昆虫はサナギの状態のものは生き延びた上に、腐った樹木や動物の遺体を食べて生き延びた者も多かったのでしょう。一部のセミのように、十数年も地中で生活するような昆虫は圧倒的に有利だったでしょう。

翼竜は絶滅したのに、鳥類が生き延びたのはなぜでしょう? しかも鳥類の中でも、孔子鳥、エナンティオルニス、ヘスペロルニス、イクチオルニスが絶滅し、現生鳥類の祖先だけが生き延びたのはなぜでしょう? これは未解決の謎です。アイデアすらわいてきません。

海では表層ほど環境が悪かったので、特にアンモナイトなど卵が海面に浮く生物は不利だったようです(8)。石灰質の殻をもつプランクトンも大打撃を受けたため、この災害を最後に石灰質が地層に蓄積されることはなくなりました。すなわち白亜紀の終了です。

参照:

1) http://www.memoryoftime.com/home

2) http://www.memoryoftime.com/fossils

3) こちら

4) http://www.master-fossil.jp/product/detail/FILeC-0001/

5) 「白亜紀の生物」上巻 土屋健著 技術評論社 2015年刊

6) http://www.itmedia.co.jp/news/articles/1503/06/news083.html

7) http://pokesplicing24.tumblr.com/post/140671560133/ommanyte-so-whilst-the-initial-pok%C3%A9mon-sun

8) 「白亜紀の生物」下巻 土屋健著 技術評論社 2015年刊

9) Alvarez LW et al.,  Extraterrestrial cause for the cretaceous-tertiary extinction. Science. 1980 Jun 6; 208(4448):1095–1108.

10) 「生命進化の物語」 Richard Southwood 著 垂水雄二訳 八坂書房 2007年刊

|

生物学茶話@渋めのダージリンはいかが28: 白亜紀の生物3

本稿「白亜紀の生物3」では、まず哺乳類の進化についてみてみます(図1)。哺乳類は三畳紀にサイノドンから分岐したようです。まず単孔類のような生物が生まれ、その後ジュラ紀に有袋類と有胎盤類(真獣類)が出現したと考えられています。

1

哺乳類(哺乳形類)の化石は今のところ2億2500万年前(三畳紀後期)に生きていたアデロバシレウスが最古とされています。アデロバシレウスはサイノドンと哺乳類の中間的な生物かも知れません。アデロバシレウスやその他の三畳紀の原始的哺乳類(哺乳形類)の復元図はすでに示しました(1)。哺乳類は単系統とされているので、私たちすべての哺乳類の祖先がアデロバシレウスかもしれません。ただ三畳紀のサイノドンは、かなり哺乳類に近い顎や耳の骨を持つように進化してきていたので、いくつかの系統から哺乳類が進化してきた可能性は残されているのではないかと私は思っています。

哺乳類の遺伝子解析によれば、単孔類と有袋類・有胎盤類が分岐したのは、2億3100万~ 2億1700万年前(三畳紀中期から後期)と推定してされています(2)。これは系統図におけるアデロバシレウスの位置決めにとっては微妙です。2つの系統がわかれる前の生物だったのか、それとも後だったのかがわかりません。専門家は哺乳形類(原始的哺乳類の意味)という枠を設けて、そこにとりあえず放り込んでいます。

単孔類に属するカモノハシとハリモグラ(図2 ウィキペディアより 以下同)はいまでもオーストラリアとパプアニューギニアに生きています。彼らは尿道・生殖道・結腸の出口が共通で、この点が有袋類や有胎盤類と異なります。カモノハシは卵生で、鳥類などと同様、親が抱卵して暖めますが、ハリモグラは繁殖期にできる育児嚢のなかに卵を産み、そこで孵化するまで育てます(2)。単孔類の母親は乳首は持っていませんが、乳腺はもっており、孵化した子は母乳によって哺育します。中生代の単孔類にはよい化石がなく、復元も困難だそうです。新生代の化石からは歯を持ったカモノハシがみつかっています(3)。

2a

有袋類は現在でも多数の種類がオーストラリア、パプアニューギニア、北南米に生きています。彼らは尿道・生殖道は一体ですが、肛門が分化して結腸の出口は別になりました。また胎盤をもっていないか、胎盤が未発達なため、非常に未熟な段階で子供を産み落とし、育児嚢のなかで育てることになります。内温動物でありますが、気温により保ちうる体温が変動するなど、有胎盤類や多くの鳥類に比べ、体温調節能力は低いとされています。

有袋類の中生代の化石は稀少ですが、1億2500万年前(白亜紀前期)のシノデルフィスという生物の化石が中国でみつかっています。これはかなり良い状態で、毛皮の存在までわかる全身(全長約15cm)の化石で、オポッサムのような感じです(図3)。BBCニュースの復元図です(4)。川崎悟司氏も復元図を描いています(5)。

3a

有胎盤類は現在主流となっている哺乳類で、ヒトももちろん含まれます。有胎盤類(真獣類)で特筆されるのは、ジュラマイアという1億6000万年前の生物の化石が見つかっているという点です。現存生物のDNAを比較すると、有袋類と有胎盤類が分岐したのは1億6000万年前くらいということですので(6)、ジュラマイヤは分岐したばかりの有胎盤類といえるでしょう。ジュラマイヤはマウスくらいの大きさの生物で、樹上生活に適した前肢の構造が認められるそうです(6、7)。昼間は安全な樹上で休み、夜間に地上で昆虫を捕食するなどの活動していたのかもしれません。

ジュラマイヤよりさらに完全な化石が2013年に中国で発掘されました(8)。これはハラミヤという、やはり1億6000万年前に生きていた、現在で言えばハタネズミのような感じの生物ですが、リスのような樹上生活をしていたと考えられています。硬い木の実を食べられるような歯をもっていました。多丘歯類(あとで登場)と近縁とも言われています。この復元図(図4)は出所不明なので、問題があれば下のコメント欄をクリックしてご指摘下さい。その際は直ちに削除します。

4

同時期にやや毛色の違うカストロカウダというビーバーに似た生物も生きていました(図5)。体長約45cmで、水中で魚を補食していたと思われます。サイノドンと哺乳類の中間的な生物のようです。樹上とか河川などは恐竜があまり得意でないニッチで、われわれの祖先はそのような場所を見つけてしぶとくジュラ紀・白亜紀を生き抜いたのでしょう。

5a

やはり1億6000万年前の地層から、ルゴソドンという多丘歯類(齧歯類に近い)の化石もみつかっています。ラットとリスの中間的な印象ですが、雑食性の樹上生活者だったようです。くるぶしが180℃回転するという、樹上生活に適した体の構造を持っていました。この後白亜紀大絶滅も生き延びて、多丘歯類は哺乳類の中ではかなり繁栄したグループと言えます。最終的には類似した齧歯類との生存競争に敗れたと思われ、現存している種はありません。ルゴソドンについては、美しいイラストと詳しい解説が文献(9)にあります。

ジュラ紀・白亜紀に恐竜とまともにニッチを争って生きていた哺乳類は少なかったと思われますが、ゴビコノドン類(トリコノドンタ)はまさしくそのような生き方をしていたと考えられています。体長1mくらいのものもいたようで、レペノマムスは恐竜の幼体を襲って食べていた証拠もみつかっています。図6としてウィキペディアに出ていたゴビコノドンの復元図を貼っておきます。すばらしいイラストですが、耳が妙に人間的なのが気になります。

A

1億2500万年前のエオマイヤの化石も美しく印象的です(図7)。全身がまるごとみられることと、明らかに体毛が化石として残っているのがすごいところです。哺乳類やサイノドンは体毛を持っていたと考えられていますが、実際に化石として残っているのは、これが今のところ最古でしょう。この生物も原始的な有胎盤類と考えられています。復元イラストは文献(10)を参照してください。ジュラマイヤが発見されるまで、この生物の化石が最古の有胎盤類でした。

Photo_3

哺乳類は樹上を自分たちのニッチとして獲得したと思われるのですが、それ以外にも重要な点があります。それは彼らが夜間の行動を得意としていたことです。その名残は現在でもみられます。恐竜の末裔である鳥類は4原色の非常にカラフルな世界で生きていますが、「とり目」と言われるように多くの鳥類は夜が苦手です。一方哺乳類はほとんどの種類がモノクロに近い世界で生きていて、一部の霊長類だけが3原色の色彩世界で生きています。もともと夜行性の生物は色彩の認識は不用で、むしろ光に対する感度を高める方が重要でした(11)。

夜行性ということは、私たち哺乳類の特性と密接に結びついています。上記の目の感度上昇、耳の感度上昇、においの感度上昇、これらは脳の機能の発達と関係があります。体毛を持つ内温動物であることも、寒い夜に行動するには大きなメリットです。感覚毛(ヒゲ)の発達も、暗闇で目鼻を傷つけないため大事でしょう。

参照サイトおよび文献:

1) http://morph.way-nifty.com/grey/2016/06/post-12e9.html

2) http://www.seibutsushi.net/blog/2008/02/404.html

3) http://natgeo.nikkeibp.co.jp/nng/article/news/14/8517/

4) http://news.bbc.co.uk/2/hi/science/nature/3311911.stm

5) http://www.geocities.co.jp/NatureLand/5218/sinoderufisu.html

6) http://natgeo.nikkeibp.co.jp/nng/article/news/14/4773/?ST=m_news

7) http://blogs.scientificamerican.com/observations/jurassic-mammal-moves-back-marsupial-divergence/

8) http://natgeo.nikkeibp.co.jp/nng/article/news/14/9710/

9) http://science.sciencemag.org/content/suppl/2013/08/15/341.6147.779.DC1/Yuan-SM.pdf

10) http://www.geocities.co.jp/NatureLand/5218/eomaia.html

11) 「恐竜vsほ乳類」NHK恐竜プロジェクト著 監修:小林快次 ダイヤモンド社(2006)

|

«生物学茶話@渋めのダージリンはいかが27: 白亜紀の生物2