カテゴリー「私的コラム(private)」の記事

2019年4月19日 (金)

クリスパー/キャス9 遺伝子編集への道

遺伝子編集が最近巷で話題になっているようなので、2年半ほど前に書いた記事を再掲することにしました。

遺伝病は遺伝子のたった一組の塩基対の異常によっても発生し、それが原因で落命するということもあり得ます。有名なのは鎌形赤血球貧血症で、一対の塩基対の異常によってヘモグロビンベータのグルタミン酸がバリンに代わり、ヘモグロビンの機能が低下して貧血になります。どの遺伝子のどの塩基対が変異をきたしても病気になる可能性があるので、遺伝病のバラエティは無数にあります。

これらの遺伝子を正常にもどして病気を治療するというのは、分子生物学者にとってのひとつの夢でした。当初考えられたのは、レトロウィルスベクターを使って正常な遺伝子を細胞に注入するというやり方でした。

しかしそこで予想もしなかった事態が発生しました。まず1999年にゲルシンガー事件というのがおこりました。患者のゲルシンガー氏の免疫系がベクターに異常に強い反応を起こして、患者が死亡してしまったのです。2000年代のはじめには、X連鎖重症複合型免疫不全症(SCID-X1)と呼ばれる疾患に対して、20人の小児患者が遺伝子治療を受けましたが、そのうちの5人が白血病を発症し、1人が死亡するという事件が起きました。この原因は患者のゲノムに挿入された治療用遺伝子が「がん遺伝子」を活性化したためと考えられています(1、2)。現在ではレトロウィルスベクターのかわりに、より安全性を担保されたレンチウィルスベクターが用いられ、ウィルスベクターによる遺伝子治療が再出発しています(3)

しかしこのようなウィルスベクターによる治療にはいつくか問題点があります。ひとつは遺伝子が挿入される場所を指定できないので、何が起こるか判らないという怖さがあること。いまひとつはハンチントン病のように、変異遺伝子が生成する異常タンパク質が、正常なタンパク質の作用を妨害するような場合には無効であることです(4)。したがって、そのようなウィルスベクターによる治療に危惧を抱いていたグループの中では、前稿でとりあげたカペッキやスミティーズの相同遺伝子組み換え技術によって、異常遺伝子を正常遺伝子に組み換えるという可能性を追求しようという機運がひろがっていました。

そもそも相同遺伝子組み換えというのは、真核生物では主に減数分裂の時におこる現象ですが、どのようなメカニズムで行なわれるのでしょうか? このそもそも論に取り組んだのがジャック・ショスタクです。彼はテロメア・テロメラーゼ関連でノーベル賞を受賞しましたが、それ以外の仕事でもその天才ぶりを遺憾なく発揮しました。

DNAは常に放射線・紫外線・化学物質などにさらされており、日常的に損傷を受けています。損傷のタイプは大きく分けて二つあり、ひとつは1本鎖の切断で、これは修復機構が数多く知られています(5、6、図1)。いまひとつは2本鎖の切断で、1本鎖の切断の場合と異なり、断点でDNAが生き別れてしまうおそれがあるという生命にとって極めて危険な状況が発生します(図1)。しかし生命はあえて損傷時以外にも、減数分裂時には染色体の組み換えを行なって、遺伝子のシャフリングを行なっています。そのためには2本鎖の切断と修復が必要です(図1)。

Image1

ショスタクらは1983年に、2本鎖切断を修復する機構のモデル(仮説)を発表しました(7、図2)。今見てみると非常に味わい深いモデルだと思いますが、発表された当時はあまりに都合の良いことを単純につなぎ合わせたような気がして、信じ難い感じがしました。多くの研究者が当時はそう思っていたのではないでしょうか。しかし現在では着々とその正しさが証明されつつあります(8)。2本鎖の断点から、まず1本鎖が断点の5’側からエクソヌクレアーゼによってかじられ(タンパク質がとりつくスペースを空けるためでしょう)、かじられなかったもう1本の鎖にRAD51(図2の赤丸)というタンパク質がとりつきます。これとRAD54(図2のオレンジ楕円)などが協力して相同染色体の対応部位をさがしてとりつきます。ここで相同染色体にある塩基配列を利用して図2のような修復を行ないます。結果的に染色体の組み換えが行なわれていることに注意して下さい。修復に利用された相同染色体側から見れば、染色体の一部が切り取られて移動しただけですが、2本鎖切断を受けた側の染色体では、極めて複雑なプロセスがあることがわかります。このプロセスの全貌はまだ解明されていません。

重要なのは、生物が本来持っている遺伝子組み換え機構を発動するには、DNA2本鎖切断、相同染色体、DNA加工酵素、相同部位を探すために必要なタンパク質、の4者が必要だということです。

Image2

DNAの2本鎖修復が、切断を受けたDNA以外のDNAを利用して行なわれることの証拠をはじめて示したのはマリア・ジャシンらでした。彼女らは18塩基配列を認識して2本鎖DNAを切断する特殊なエンドヌクレアーゼをマウスに導入し(マウスにはこ18塩基配列がないため、ずっと発現していても何もおこらない)、18塩基配列をマウスゲノムに埋め込むとともに、この配列に相補的なDNA断片を供給すると、約10%の細胞が相同組み換えによってDNAを修復することができました(9)。

この記事の主役であるジェニファー・ダウドナはショスタクの研究室で博士号を得ているので、当然相同遺伝子組み換えには関心を持っていたはずですが、ポストドクはコロラド大学のトム・チェックの研究室でリボザイムの研究を行なっていました。しかし彼女が就職してから最初に取り組んだのは、「細菌の免疫機構」というテーマでした。

参照(4)によると、2006年のある日会ったこともないジリアン・バンフィールド(ジル)という研究者から電話がかかってきて、共同研究のオファーがあったそうです。よくわけがわからなかったそうですが、ダウドナはその熱意にほだされて会って話を聴くことにしました。ジルはあらゆる細菌DNAが規則的にとびとびに並んだクラスター状の回文反復配列を持っており、その反復配列の間に異なる配列がはさまれているという話をしました(図3、灰色部が反復配列、赤・青・緑がそれぞれ異なる配列)。

この回文反復配列は、もともと別の大腸菌遺伝子の研究をしていた石野良純がその隣接領域に発見して報告していたものです(10、図3の赤枠の中)。当時はこの配列の重要性に誰も気づきませんでしたが、かなり後になって、この配列が多くの細菌・古細菌にみられるということをフランシスコ・モヒカらが報告しました(11)。ウィキペディアによれば、配列決定された原核生物のうち真正細菌の4割と古細菌の9割に見出されているそうです。この配列は2002年にルート・ヤンセンらによってCRISPR(クリスパー=Clustered Regularly Interspersed Short Palindromic Repeats)と命名され、この近傍にはCAS遺伝子群(CRISPR-associated genes)が存在することも明らかになりました(12)。

Image3

ダウドナがジルに会う少し前に、アレグザンダー・ボロティンらが、反復配列にはさまれた赤・青・緑の領域がウィルスの塩基配列とホモロジーがあることを発表していました(13)。さらにジルはダウドナにマカロヴァらの最新の論文を見せ、そこにはクリスパーが細菌の免疫機構のひとつであることが示唆されていました(14)。 ダウドナは自分がそれまで研究していたRNA干渉(mRNAの相補配列をもつRNAが転写を制御する機構)が、原核生物の免疫に関与しているという話に驚愕し、ただちに食いつきました(4)。ダウドナの本には、海中の細菌の40%が毎日ウィルス感染によって死んでいると書いてあります。細菌にはすごい増殖能力があるのでウィルス感染なんて「へ」でもないというわけにはいかないようです。

ちょうどその頃、ロドルフ・バランガウらはウィルス抵抗性を獲得した細菌のクリスパーを調べて、新規にそのウィルスのゲノム配列がスペーサー部にコピーされていることを発見し、クリスパーが細菌の獲得免疫をになう機構であることを証明しました(15)。この免疫機構が素晴らしいのは、いったん獲得するとそれが子孫にも受け継がれるという点です。

2008年になりスタン・ブロウンズらは、まずクリスパー全体が転写され、次に転写されたRNAがリピート部分でRNA分解酵素によって切断されて、各スペーサー部分と相補的なRNA分子が生成されることを示しました(図4、16)。この短いRNAはウィルスゲノムと相補的な構造をもっているため、ウィルスを不活化することができると考えられます。しかしそのメカニズムはそのようなものなのでしょうか。最近の研究ではこのメカニズムは大きくわけて大腸菌などに適用される I 型と レンサ球菌などに適用される II型があることがわかっています。

Image4

ダウドナの研究室では2011年頃までは主に特異性の低いクリスパー I 型について研究していたのですが、プエルトリコのカフェで偶然エマニュエル・シャルパンティエと出会って共同研究を始めた頃から、特異性の高い II 型の研究に重心を移しました(4)。エマニュエルは II 型クリスパーシステムを持つレンサ球菌のCAS9を研究していて、この遺伝子の突然変異によって免疫機構が失われることをみつけていました。ダウドナ研ではエマニュエルの研究室の他各地から人材を集めてCAS9の機能分析を行ないました。中心となったのはダウドナ研のマーティン・イーネック(Martin Jinek) とシャルパンディエ研の クシシュトフ・チリンスキ(Krzysztof Chylinski)です(図5)。二人ともポーランド語を話せたので意思疎通はうまくいったようです。

当初はクリスパーRNAとCAS9でファージDNAを切断できると思っていたわけですが、実はそれ以外に tracrRNA(trans-activated RNA)というもうひとつの役者が必要であることがわかりました。このRNAはクリスパーRNAと相補配列をもち、ハイブリッドを形成してCAS9を分解すべきDNAの特定部位に導きます。PAM配列という生物種や関連分子種によって異なる特異配列が誘導に介在しています。CAS9がDNAの2本鎖をこじ開けると、クリスパーRNAがその片側と結合します。その状態でCAS9のふたつのヌクレアーゼサイトを同時に使って2本鎖の両方を同時に切断します(17、図5)。

ダウドナ研で tracrRNAとクリスパーRNA(crRNA)を人工RNAで接続し1分子(キメラ分子)に統合してもCAS9を切断部位に誘導できることが示され、図5のようにクリスパーをツールとして用いるときは、このようなキメラ分子を使うのが便利ということになりました(図5)。この人工キメラ分子はsgRNA(シングルガイドRNA)と名付けられました。

Image5

図6はクリスパーの基礎研究を主導した3人の女性研究者です。彼女たちは研究者としてのみならずマネージャーとしても一流で、多額の研究費を得て大規模な研究室を維持し切り盛りしています。ちょっとバークレイのダウドナ研のサイトをのぞいてみましたが(18)、主要メンバーはほとんど中国系で驚かされます。まもなくノーベル賞を受賞しようかという研究室にもかかわらず、ポストドク、学生のなかに日本人がみあたらないのは残念です。CAS-クリスパーシステムのもう少し専門的または詳しい日本語解説をみたい方は(19)などを参照されるとよいでしょう。

Image6

CAS-クリスパーシステム(sgRNA+Cas)と挿入用のDNAを使えば、正確な位置にDNAを挿入することができます(図7)。といっても遺伝子をまるごと挿入できるわけではありません。ダウドナはその著書のなかで「CRISPRは私たちに生命の分子そのものを思うままに書き換える手段を与え」と述べていますが、それはちょっと大げさです。たとえば2種類のsgRNAを用いてひとつの遺伝子を両端で切断してとりはずし、別の遺伝子と入れ換えるなどということはできません。ただ遺伝子に突然変異を導入する効率は飛躍的に進歩しました。

Image7

CAS-クリスパーシステム(sgRNA+Cas)を使ってDNAを切断すると、2本鎖切断がおきるので、鋳型に依存しない通常不正確な修復機構によってDNAがつながります。この結果しばしば遺伝情報のフレームシフト(横ずれ)によってコードが意味をなさなくなり、遺伝子の機能が失われます(図8)。

Image8

マウスの受精卵にCAS-クリスパーシステム(sgRNA+Cas)を注入し、胚盤胞まで培養して仮親に育てさせると(図9)、狙った遺伝子が図8のような機構で無効化し、ノックアウトマウスを作成できます。また同時にオリゴDNAを注入すると、そのオリゴDNAをゲノムDNAにとりこんだ動物ができます。たとえば突然変異を持つ動物を作成できます(20、図7)。

Image9

ある遺伝子に変異を導入して病原菌のターゲットにならないように遺伝子を改変するというのは、CAS-クリスパーシステムの得意とするところです。うどんこ病に抵抗性のコムギなどは大きな成功でしょう(21)。このシステムでは狙った特定の位置に正確に変異を導入できるので、X線・ガンマ線・化学物質などを使ってランダムに導入された変異などとはわけが違う、素性のはっきりした品種改良であり、これは私達が慎重さを確保した上で受け入れるべきものでしょう。

ダウドナの本(4)は非常によくまとめられていて、著者の頭の良さをうかがわせますが、同時にクリスパーのプロパガンダの本でもあります。クリスパー/キャス9はもともとウィルスのDNAを破壊するためのシステムであり、特定の配列を認識してDNAを切断することはできますが、これを遺伝子編集というのはかなりおおげさな表現だと思います。編集と言うからには削除、追加、入れ替えが自在にできなければいけませんが、クリスパー/キャス9は遺伝子を無効化するのは得意ですが、追加や入れ替えはDMA2本鎖切断修復という極めて不完全なシステムに依存するため、まだまだ「編集」というにはほど遠い状況です。

クリスパーシステムが制限酵素のシステムと違うのは、ひとつはウィルスのDNA配列を記憶しておけるということ。もうひとつは制限酵素よりはるかに長い配列(20塩基)を認識できるので、自分のDNAを間違って切断する心配はない(したがってメチル化による保護は不要)ということです。

クリスパーシステムを用いた遺伝子治療を行なうには、プラスミドかウィルスにCAS-クリスパーを潜入させて、標的になる細胞にとりこませなければなりません。受精卵は大きいのでマイクロインジェクションで注入できますが、体細胞にはこのやり方は向いていません。このあたりがなかなか難しいところです。

参照

1)免疫不全症の遺伝子治療 AASJ
http://aasj.jp/news/watch/2281

2)遺伝子治療の現状と課題 PMDA科学委員会
https://www.pmda.go.jp/files/000156275.pdf

3)遺伝子治療の再来 北青山Dクリニック がん遺伝子治療センター
https://cancergenetherapy-dclinic.info/knowledge/treatment/457/

4)ジェニファー・ダウドナ、サミュエル・スターンバーグ著 櫻井裕子訳 「クリスパー 究極の遺伝子編集技術の発見」文藝春秋社(2017)

5)http://morph.way-nifty.com/grey/2016/11/post-4728.html

6)http://morph.way-nifty.com/grey/2016/12/post-1ebc.html

7)Jack W. Szostak , Terry L. Orr-Weaver , Rodney J. Rothstein , Franklin W.
Stahl., The double-strand-break repair model for recombination., Cell Vol. 33,
Issue 1,  pp. 25-35 (1983)
https://www.sciencedirect.com/science/article/pii/0092867483903318

8)黒沢綾、足立典隆 ヒト細胞における DNA 二本鎖切断の修復 Isotope News  2014 年 5 月号 No.721、 pp.
8-14
https://www.jrias.or.jp/books/pdf/201405_TENBO_KUROSAWA_ADACHI.pdf#search=%27%E9%BB%92%E6%B2%A2%E7%B6%BE%E3%80%81%E8%B6%B3%E7%AB%8B%E5%85%B8%E9%9A%86%27

9)Philippe Rouet, Fatima Smih and Maria Jasin., Expression of a Site-Specific
Endonuclease Stimulates Homologous Recombination in Mammalian Cells., Proc.
NAS., Vol. 91, No. 13, pp. 6064-6068 (1994)
https://www.jstor.org/stable/2365114

10)Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987)
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase
isozyme conversion in Escherichia coli, and identification of the gene product.
J. Bacteriol. 169, 5429-5433.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC213968/pdf/jbacter00202-0107.pdf

11)Francisco J. M. Mojica, Cesar Díez-Villaseñor, Elena Soria, Guadalupe
Juez., Biological significance of a family of regularly spaced repeats in the
genomes of Archaea, Bacteria and mitochondria., Molec. Microbiol., vol. 36,
Issue 1, pp. 244–246 (2000)
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2000.01838.x/full

12)Jansen R, Embden JD, Gaastra W, Schouls LM.,  “Identification of genes
that are associated with DNA repeats in prokaryotes”. Mol Microbiol vol. 43 (6):
pp. 1565–1575. (2002) doi:10.1046/j.1365-2958.2002.02839.x. PMID 11952905

13)Bolotin A, Quinquis B, Sorokin A, Ehrlich SD., Clustered regularly
interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal
origin., Microbiology. vol. 151(Pt 8): pp. 2551-2261. (2005)
https://www.ncbi.nlm.nih.gov/pubmed/16079334

14)Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV., A putative
RNA-interference-based immune system in prokaryotes: computational analysis of
the predicted enzymatic machinery, functional analogies with eukaryotic RNAi,
and hypothetical mechanisms of action.,  Biology Direct, 1:7, (2006) 
doi:10.1186/1745-6150-1-7
https://www.ncbi.nlm.nih.gov/pubmed/16545108

15)Rodolphe Barrangou et al., CRISPR Provides Acquired Resistance Against
Viruses in Prokaryotes., Science vol. 315, Issue 5819, pp. 1709-1712
(2007)
DOI: 10.1126/science.1138140
http://science.sciencemag.org/content/315/5819/1709.long

16)Brouns SJ et al., Small CRISPR RNAs guide antiviral defense in
prokaryotes., Science. vol. 321 (5891): pp. 960-964. (2008)  doi:
10.1126/science.1159689.
https://www.ncbi.nlm.nih.gov/pubmed/18703739

17)Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E., A
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.,

Science vol. 337(6096):  pp. 816-821. (2012)  doi: 10.1126/science.1225829.
Epub 2012 Jun 28.

18)http://rna.berkeley.edu/people.html

19)新海暁男  CRISPR-Casシステムの構造と機能 生物物理 vol. 54(5),pp. 247-252(2014)
https://www.jstage.jst.go.jp/article/biophys/54/5/54_247/_pdf

20)H Wang et al., One step generation of mice carrying mutations in multiple
genes by CRISPR/Cas-mediated genome engineering., Cell vol. 153 pp. 910-918
(2013)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969854/

21)Yanpeng Wang et al., Simultaneous editing of three homoeoalleles in
hexaploid bread wheat confers heritable resistance  to powdery mildew., Nature
Biotechnology, vol. 32, pp. 947-952  (2014 ) DOI:
10.1038/nbt.2969

| | コメント (0)

2019年4月17日 (水)

プリンターの死

Img_3028

Canon PIXUS MP980 というプリンター(写真)を10年以上使ってきましたが、ついに6C10という死の宣告が出て、動かなくなってしまいました。純正インクを全部セットしたばかりで、昨日まで元気だったのにショックです。

https://kidukilife.net/pc/canon6c10/

世の中には執念深い人がいて、このメッセージ「6C10」を消去して、機械はまだ正常だと誤解させるプログラムを考えた人もいるようで試してみましたが、それでも6C10は消えず。諦めました。

修理には1万円以上かかるようなので、買い換えざるを得ないかもしれません。ここ何年かのプリンター製品は進化しているというより、使い勝手が悪くなって退化しているような気配もあるので困ります。

https://hiroshi10010269.com/4768/

https://review.kakaku.com/review/K0000941959/ReviewCD=1210720/

プリンターの葬儀には、市役所に電話して廃棄の日程を決める、コンビニで粗大ゴミチケット(500円)を購入して貼り付ける、指定のゴミ置き場に指定日・指定時間に出すなどの作業が必要で、やるしかありません。

パソコンもそろそろウィンドウズ10に移行しないといけませんし、ときどき落ちるようになったので心配の種はつきません。

| | コメント (0)

2019年4月 8日 (月)

北総の桜 2019

Img_2972

北総の桜もようやく満開となりました。今年は1週間以上東京より遅い満開です。私達にとっては毎年のことですが、知らない人を案内すると歓声を上げたりするので、それなりに立派な並木道だと思います。上野の桜などに比べると、木が若いので勢いがあります。

ただあまり配慮なく、近接した位置に街灯を配置したため、桜で街灯が隠されるうえにライトアップ効果もゼロです。

私のフェイバリットである熊木杏里も自作の Love letter~桜~ という名曲をリリースしていますが、コブクロの「桜」のカバーも素晴らしいと思います。

熊木杏里 - 「桜」(コブクロ 「桜」 のカバー)
https://www.youtube.com/watch?v=NAnBxv8hJU0

熊木杏里 - Love letter ~桜~
https://www.youtube.com/watch?v=KNmNITPIJYE

あいみょんも底知れぬパワーで、「ハルノヒ」というバラードを歌う
https://www.youtube.com/watch?v=pfGI91CFtRg

昔北千住で草野球をやったことがあります。草野球といってもちゃんとユニフォームにスパイクで、めちゃくちゃに気合いを込めて。ただ荒川の河川敷がぐちゃぐちゃに湿っていて守りにくいのなんの。

 

| | コメント (0)

2019年4月 1日 (月)

新元号「令和」にはスターリニズムの臭気がする

1_8 

「令」というのは国語辞典によれば  命令 布告 法令、いいつけ。 などという意味のようです。だとすれば、令和というのは政府の命令によって国家の平和がたもたれるという意味に解釈できます。これにはスターリニズムの臭気が感じられます。安倍政権らしいといえば「らしい」。赤松広隆はこれに抵抗しなかったのでしょうかね?

ほほう 石破茂も「令」という字に違和感を感じるそうな!
https://johosokuhou.com/2019/04/02/13481/

外国のマスメディアでは、日本の右傾化を示す表現だとされています
https://headlines.yahoo.co.jp/hl?a=20190401-00000018-jct-soci

しかるに日本のマスメディアは語感がいいとか、万葉集からの引用は望ましいなどと諸手を挙げての賛成とは驚きです。

 

| | コメント (0)

2019年3月24日 (日)

ゲノム編集という言葉は不適切

そもそも編集と言うからには、削除・修正・追加という3つの作業ができなければいけません。ところがゲノム編集では削除しかできないのですから、編集という言葉を使うことは不適切です。
この技術は人間が発明したのではなく、細菌がそのDNAに侵入してくるウィルス(バクテリオファージ)を排除するために発明したものであり、人間はそれを利用させてもらっただけです。もともと進入してくる敵対遺伝子を無効にするためのメカニズムですから、それで特定の好ましくない遺伝子を好ましい遺伝子に改善したり、好ましい遺伝子と入れ替えたりすることはできません。ですからゲノム編集というのは間違った表現で、正しくは遺伝子無効化と言うべきでしょう。
そんなことは百も承知であえてゲノム編集という言葉を使っているのは、こ分野の研究者のいかがわしい臭気を感じさせます。このような連中ですから、科学的真実を隠蔽しても、大衆受けや商業利用の推進を優先するということはあり得ることでしょう。孔子の言葉を思い出します。
-------------------------------
孔子はある小さな国の政治をやってくれないかと頼まれました。しかしその国には予算は少なく、軍隊も弱い状態でした。弟子である子路は心配して、孔子に「そんなところで、先生は何をなさるのですか」とききました。すると孔子は
必也正名乎。名不正則言不順、 言不順則事不成。
(かならずや名をたださんか。名正しからざれば則(すなわ)ち言(げん)順(したが)わず、言順わざれば則ち事成らず)
という有名な言葉で答えました。この意味は「私はまず言葉を正しく定義する。もし言葉の定義が正しくなければ、何を言っているか意味がわからない。何を言っているかわからなければ、何事もできなくなってしまう」 
-------------------------------
http://morph.way-nifty.com/lecture/2017/12/post-7e2f.html
http://morph.way-nifty.com/lecture/2017/12/post-7b78.htm

| | コメント (0)

2019年3月23日 (土)

報道特集:ゲノム編集

本日TBS報道特集でゲノム編集の特集をやっていました。
もちろんゲノム編集は遺伝子組み換えとは異なり、品種改良と基本的には同じです。
しかしそのスピードが非常に速いので、一気に多数の製品がつぎつぎと出現するため、品種改良のようにのんびりと評価できないという問題があります。
狙った遺伝子がつぶれるだけなのかどうかというのも保障はありません。
最も危険なのは自然の突然変異と区別できないから野放しにするしかないと言っている学者で、それは警察が発売した企業を調査すればわかることであり、ごまかされてはいけません。ですから当然ゲノム編集でつくられたものであるという表示は意味があり、検証も可能です。番組によると、現在政府は表示しなくてよいという方向に向かっているらしく、これは問題です。
私は食料品に関しては、医薬品ほど厳密ではなくて良いので、メーカーが動物実験で安全性を確認したあと、試食を希望する一定のユーザーに無料でサンプルを提供し、安全性に関するテストを厚労省あるいは傘下の独立行政法人の管理のもとに実施すべきであると思います。
http://morph.way-nifty.com/lecture/2017/12/post-7e2f.html
http://morph.way-nifty.com/lecture/2017/12/post-7b78.html
----------
ココログの管理プログラムの変更に伴って、ブログの一部の写真が消えるという事故が発生しています。はやく何とかして欲しいと思います。

| | コメント (0)

2019年3月21日 (木)

ココログが工事中のようです

ココログの工事が長引いているようで、うまく管理ができていません。
しばらく開店休業になりそうです。

| | コメント (0)

2019年3月 3日 (日)

新大阪駅から見たジェット機とプロペラ機

Img_0075


Img_0074


岡野宏典×熊木杏里 『春よ、来い』   

https://www.youtube.com/watch?v=ySVmjDLebgM

| | コメント (0) | トラックバック (0)

2019年2月28日 (木)

@niftyは大丈夫なのか!?

A0790_001128ハフポストによると、産経新聞社の新卒採用がたった2人だったそうです。@nifty は系列会社なので非常に心配です。

私はニフティーサーヴの頃から利用させてもらっているので、万一サービス停止なんてことになったら大変だし、困ります。

万が一にも会社をたたき売るなんてことは勘弁して欲しい。

https://www.huffingtonpost.jp/entry/sankei_jp_5c73ac13e4b00eed08367f26

プロバイダーはそんじょそこらのビジネスとことなり、今や文化の重要な担い手です。産経新聞は右翼系読者に頼っている感がありますが、@nifty は必ずしもそうではありません。

日本には蜻蛉日記・更級日記以来、平安時代から日記文化というものがあります。ブログをはじめとするウェブサイトは書いている人の人生そのものです。私は日記は書いていませんが、それでも多大な労力を割いてブログを続けています。

プロバイダーは誇りを持って営業を継続して欲しいと思います。

(写真は産経新聞社とは関係ありません)

| | コメント (0) | トラックバック (0)

2019年2月12日 (火)

冬の団地 八重梅とヒヨドリ

Img_2857

冬枯れで寂しい風景の団地の中で、唯一咲き誇る八重梅。雪にも負けずに春を予告します。

Img_2844a

ジョージI世は随分馴れましたが、II世は警戒心が強くてカーテンを開けると逃げてしまいます。なのでパンくずを食べているところが撮影できません。縄張りを主張するためヒヨドリは枯れ枝に止まってよく鳴きます。

ただ雀にはこの主張はまったく効かないようで、エサを巡る争いも珍しくありません。ヒヨドリは1~2羽、雀は群れなのでヒヨドリが負けることもあります。

II世はいつもメスを連れていて団地の中を飛び回っています(写真)。I世はわりと1羽でいることが多かったと思います。鳥は卵を温めなければいけないので、夫婦が共同で作業することが種の存続に必須です。ただ最近の研究で、卵の4割は他のオスのタネで、オスの4割は大沢樹生のように他人の子を育てていることが分かりました。

https://www.sankei.com/premium/news/150411/prm1504110009-n1.html

| | コメント (0) | トラックバック (0)

より以前の記事一覧