カテゴリー「生物学・科学(biology/science)」の記事

2024年11月 6日 (水)

続・生物学茶話250: 交感神経と副交感神経

自律神経を発見したのは誰かというと、それはおそらく古代ギリシャの医師であり医学研究者でもあったガレノスだということになっています。原著を読んだわけではありませんが、彼は脳神経や脊髄神経がどこにはじまりどこにつながっているかということを詳しく記載しており、その中には動かしたり感じたりすることができない内臓につながっているものあるので、当然筋肉を動かしたり感覚を中枢に伝えたりするためだけに神経が存在するわけではないことは理解していたと思われます(1)。

自律神経 = autonomic nervous system という言葉を19世紀末に提唱したのはジョン・ニューポート・ラングレーですが(2)、彼は内臓につながる自律神経は遠心性神経のみという定義をしてしまったため、当時から一部では問題視されていました(3)。現在では遠心性神経(交感神経・副交感神経)、求心性神経、腸管神経を含めて自律神経とされています(4)。求心性神経が知られたのは1933年ですが、ラングレーの時代から腸管神経は知られていました。彼はこれを第3の自律神経系と呼んでいたようです(5)。

生物学的に言えば、交感神経や副交感神経は大脳には直接支配されてないとはいえ、脳には支配されているので自律神経というのは妙な言葉ではあります。求心性神経も脳に情報を伝えるためにあるわけですから同様です。一方、腸管神経は脳から影響は受けるものの、基本的には脳につながっていないので正しい意味での自律神経です。そしてウルバイラテリア(始原的左右相称動物)がまだ生まれていなかった頃から、そして生物が脳を持っていなかった時代から、腸管神経は存在していた可能性があります。

まあそういうロマンティックな話はさておき、交感神経と副交感神経から話を始めたいと思いますが、ウィキペディアの図(6-8)はやや見にくいと感じたので、とりあえず修正して図250-1~図250-4として掲載しました。これらをもとに話を進めたいと思います。

2501a

2502a

2503a

2504a

まず脳幹系副交感神経(図250-1)からみていくと、III・ⅤII・ⅨのグループとⅩのグループとは違うなと感じます。前者はすべて獲物または餌をみつけて食べるということに関連したものであり、後者は様々な臓器が進化していくなかで、それぞれを制御する神経が徐々に生まれてきたと想像されます。たとえばナメクジウオ(頭索類)には肝臓がありませんが、このグループから進化したとみられるヌタウナギ(メクラウナギ、円口類)には肝臓があり、迷走神経があります(9)。しかしナメクジウオに自律神経がないかというとそんなことはなく、例えば彼ら独特の内分泌器官であるハチェックピットには自律神経と思われる神経が伸びているようです(10)。

副交感神経の出力は空間配置的には延髄でいったんとぎれて、脊髄の大部分からは交感神経のみが出力し、その最先端部(尾に近い部分)の仙髄から再び副交感神経が出力します。おそらく目や口に関連のある最前部と生殖に関係がある最後部がエディアカラ紀初期にはつながっていて、その中間部はその後できてきたと想像されます。このことから考えると、脳幹から出力している副交感神経がより古いタイプの神経なのでしょう。

交感神経と副交感神経には奇妙な一致点があります。それは自律神経節という中継地点があり、そこで1回シナプスを経由して情報が伝達されるという点です。ただその中継地点は交感神経の場合脊髄に非常に近いところにあり、副交感神経の場合は臓器に近いところにあります(図250-5)。いずれの場合も自律神経節より中枢側を節前神経、末梢側を節後神経といいます。図250-1~図250-4の交感神経では、節前神経を実線、節後神経を点線で描いてあります。交感神経の場合、同じ情報を多くの臓器に伝えるため、副交感神経の場合個々の臓器に別々に情報を伝えるためにこのような構造になっていると考えられています(4 pp.38-41)。

2505a

交感神経の節前神経と節後神経は別種の細胞で、節前神経はアセチルコリン、節後神経はノルアドレナリンをシナプスで放出します。一方副交感神経の節前神経と節後神経は同種の細胞でいずれもアセチルコリンをシナプスで放出します。どちらも節後細胞のアセチルコリン受容体はニコチン型受容体です(図250-5)。。

臓器側が交感神経のノルアドレナリン情報を受け取る受容体はα型とβ型で、副交感神経のアセチルコリン情報を受け取る受容体はムスカリン型受容体です。同じ臓器であっても、異なる受容体で異なる神経伝達因子を受け取るというのは、混乱を防ぐという意味で極めて合目的的です。

交感神経と副交感神経の主な役割を図250-6の表にまとめました。それぞれが拮抗的に臓器の活動を制御していることが示されていますが、興味深いのはペニスの活動に対する機能で、拮抗するどころかシーケンシャルに生殖のためのお膳立てをやっています。たとえば臨床関係では、治療という立場から勃起と射精が全く別のメカニズムであることを強調していますが(11)、正常な生殖のためには当然連動していなければなりません。

実は迷走神経以外の部分では拮抗支配でない場合があります。例えば涙腺や唾液腺では交感神経も副交感神経も分泌する方向に誘導します。このことは脊髄ができてから迷走神経(副交感神経)vs脊髄神経(交感神経)という拮抗メカニズムが確立されたのであって、それ以前の時代には手分けしていただけだったのかもしれません。現在の私たちにおいても、汗腺・立毛筋・皮膚の血管・副腎髄質などは交感神経だけで制御されてます(4 pp.53-54)

2506a

参照

1)坂井建雄、池田黎太郎、月澤美代子 ガレノス「神経の解剖について」 ―ギリシャ語原典からの翻訳と考察 日本医史額雑誌第49巻第3号(2003)
http://jshm.or.jp/journal/49-3/403-454.pdf

2)Langley JN. On the union of cranial autonomic (visceral) fibres with the nerve cells of the superior cervical ganglion.
J Physiol (Lond) vol.23: pp.249-270.(1898)

3)田村直俊 自律神経研究の歴史 ―情動と自律神経―  第 74 回日本自律神経学会総会 / 自律神経レクチャーズ 7
https://www.jstage.jst.go.jp/article/ans/59/2/59_197/_pdf/-char/ja

4)鈴木郁子 自律神経の科学 講談社ブルーバックス (2023)

5)マイケル・ガーション著 古川奈々子訳「セカンドブレイン 腸にも脳がある」 小学館(2000)

6)Wikipedia: Autonomic nervous system
https://en.wikipedia.org/wiki/Autonomic_nervous_system

7)ウィキペディア:副交感神経系
https://ja.wikipedia.org/wiki/%E5%89%AF%E4%BA%A4%E6%84%9F%E7%A5%9E%E7%B5%8C%E7%B3%BB

8)Wikipedia: Sympathetic nervous system
https://en.wikipedia.org/wiki/Sympathetic_nervous_system

9)肝細胞研究会HP 塩尻信義、太田考陽  脊椎動物における肝臓構築の多様性と進化
http://hepato.umin.jp/kouryu/kouryu49.html

10)窪川かおる ナメクジウオの生物学 Journal of Reproduction Biology Vol. 47, No. 6 (2001)
http://reproduction.jp/jrd/jpage/vol47/470603.html

11)プライベートケアクリニック東京 勃起と射精のメカニズム
https://pcct.jp/repro/disease/mechanism-of-erection-and-ejaculation/

 

| | | コメント (0)

2024年10月29日 (火)

自律神経の科学 鈴木郁子著

Img_20241029110901

この本の著者鈴木郁子さんはお茶大理学部出身で日本保健医療大学の教授です。自律神経について学びたいと思っていたのですが、メカニズムに関心がある私としては、話を医療から始められるのは困ると思っていたのでこの本を選びました。

カバーが猫になっていますが、これは多分著者が猫好きのせいではなくて、昔は自律神経研究のための実験動物として猫がよくつかわれていたからだと思います(合掌)。このイラストの作者をみると小泉さよさんで、なんとこのブログの2つ前の記事「黒猫ダイアリー」とつながってしまってびっくり。

講談社ブルーバックス(2023年刊)なので一般向けのはずなのですが、読み始めてすぐ、これはかなりきちんとした教科書であることに気がつきます。それでとばした「はじめに」をあらためて読むと、著者の講義録をふくらませたものであると書いてありました。ならばそれなりの心構えで読まなければいけません。

そのつもりで読むと、とてもわかりやすい教科書です。脳神経系に関する予備知識がなくても読めると思います。私は特に内臓求心性線維(第3の自律神経)について興味深く拝読しました。また腎臓の健康のためにはコーヒーがよいという研究論文が複数あるとか、実用上のメリットもありました。排尿とか排便のメカニズムについては特に詳しく書いてあって、この問題を抱えている人は一読に値します。

 

| | | コメント (0)

2024年10月21日 (月)

続・生物学茶話249: 樹状突起スパイン2

樹状突起スパインの形成と可塑性にアクチン繊維がかかわっていることを最初に指摘したのはおそらくマトゥスなのでしょうが(1)、コロボヴァとスヴィトキナは海馬の細胞(ラットかマウスか不明)を培養し、樹状突起スパインの成長を観察しながらアクチン繊維の形成について詳しく調査しました。そして2010年の論文(2)の中で次のように述べています -Surprisingly, the spine necks and bases, as well as dendritic filopodia, also contained a network, rather than a bundle, of branched and linear actin filaments that was immunopositive for Arp2/3 complex, capping protein, and myosin II, but not fascin-。スパインにはアクチンのネットワークが存在し、Arp2/3 が存在するので枝分かれが可能で、ミオシンIIがあるので収縮も可能です。しかしアクチン線維のバンドリングに必要なファシンは存在しません。つまり図249-1のような細かく枝分かれした細いアクチン線維のネットワーク構造があります。

彼らの観察によると、まず糸状の細い突起ができて、それが次第にふくらみマッシュルーム型のスパインに成長するということです。これは in vivo の観察と一致しています。2020年の Jung らのレヴューではネックの部分にミオシンのリングが描いてあります(3)。マッシュルーム型のスパインができるためにミオシンがどのような役割をはたしているかはまだわかりません。いずれにしても傘の上部が広いほど多くの受容体を配置できるので、強いシグナルを樹状突起に伝えることができます。

2491

図249-1 樹状突起スパインの成長

樹状突起スパインが多くのシナプスを作って効率的な情報伝達を行うためには、その形態が細長い突起のようではいけませんし、球形でもだめで、頂上に広場のような平らな部分がなくてはいけません。このためには直接的にはシナプス前領域とシナプス後領域をつなぎとめる橋のような構造が考えられます。脳科学辞典を見ると Ephrin/EphR やβ-neurexin/Neuroligin がその役割を果たしているような図がありました(4、図249-2)。一方 N-cadherin を重要視する考え方もあります(5)。

2492

図249-2 シナプス後領域で働くタンパク質一覧(脳科学辞典)

ただそのような橋構造自体はシナプスの安定化に寄与しても、樹状突起スパインの頂点に広場をつくったり、スパインの構造自体を平ぺったくするような機能を持つとは考えられません。奈良先端科学技術大の稲垣研究室では20年位前からシューティン(shootin)というタンパク質の研究を行っていて、 フルサイズのものをシューティン1b、スプライシングバリアントをシューティン1aと命名しました。このうち1a は脳に特異的に存在していることがわかっていました(6,7)。

図249-3(写真上、5)はラット海馬培養細胞の樹状突起をファロイジンでF-アクチンの染色をしたものですが、先端に行くにつれてF-アクチンが少なくなっていることがわかります。先端のほうでF-アクチンが染色されているのはほぼスパイン領域に限られます。シューティン1a もF-アクチンと同じくスパインに局在していることがわかります(図249-3写真下、5)。Kastian らはシューティン1をノックアウトすると、スパイン自体の数が6割くらいに減り、その多くがやせたフィロポディア型になってしまうことを示しました(5)。

2493b

図249-3 樹状突起におけるF-アクチンとシューティン1aの局在

シューティン1a はF-アクチンとL1-CAM(細胞接着因子)の両者に結合する能力があるので、スパインの外側の細胞やマトリクスとL1-CAMを介して結合し、同時にF-アクチンとも結合することによって(クラッチカップリング)、アクチンの重合によって発生する力を細胞外に伝えることができます。つまりスパイン内でアクチン繊維が増えると外に押すことができるということです。したがって頭をシナプスで抑えられていると、クラッチカップリングが壁を移動させるような役割を果たしてスパインが横に膨張し、切り株のような(stubby)形のスパインを形成することができます。Kastian らはこれを図249-4に示しています(5)。

クラッチカップリングの存在はシナプスにストレスを与えないよう、位置がずれないよう、あるいは剝がれてしまわないように安定化し、記憶が安定的に保持されるうえでも有意義なのではないかと思われます。

2494

図249-4 Kastian らのスキーム

参照

1)A.Matus, Actin-based plasticity in dendritic spines. Science, vol.290(5492): pp.754-758. (2000) doi: 10.1126/science.290.5492.754.
https://pubmed.ncbi.nlm.nih.gov/11052932/

2)Farida Korobova and Tatyana Svitkina, Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis., Molecular Biology of the Cell
vol.21, pp.165–176, (2010) doi: 10.1091/mbc.E09-07-0596
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801710/

3)Minkyo Jung, Doory Kim and Ji Young Mun, Direct Visualization of Actin Filaments and Actin-Binding Proteins in Neuronal Cells., Front. Cell Dev. Biol. vol.8:588556. (2020)
doi: 10.3389/fcell.2020.588556
https://pubmed.ncbi.nlm.nih.gov/33324645/

4)脳科学辞典:PSD-95
https://bsd.neuroinf.jp/wiki/PSD-95

5)Ria Fajarwati Kastian et al., Shootin1a-mediated actin-adhesion coupling generates force to trigger structural plasticity of dendritic spines., Cell Reports vol.35, issue 7, no.109130 (2021)
https://doi.org/10.1016/j.celrep.2021.109130
https://www.sciencedirect.com/science/article/pii/S2211124721004691

6)Toriyama, M., T. Shimada, K.B. Kim, M. Mitsuba, E. Nomura, K. Katsuta, Y. Sakumura, P.Roepstorff, and N. Inagaki. Shootin 1: A protein involved in the organization of an asymmetric signal for neuronal polarization. J. Cell Biol. vol.175: p.147–157 (2006)
DOI: 10.1083/jcb.200604160
https://pubmed.ncbi.nlm.nih.gov/17030985/

7)Ria Fajarwati Kastian, Shootin1a mediates an F-actin-adhesion clutch for dendritic spine formation and synaptic plasticit., (2019) Doctoral Thesis.
奈良先端科学技術大学院大学学術リポジトリ
https://naist.repo.nii.ac.jp/records/9529

| | | コメント (0)

2024年10月19日 (土)

昔の自分に出会う

Img_2678c

なぜか急に部屋の模様がえをしたくなって、絨毯を取り替える決断をしました。そのためには上に置いてあるものをすべてどかさなくてはなりません。それであちこち掃除していると、古い原稿などがでてきて捨てようかどうしようかと迷っていると、作業がはかどりません。

そんなこんなで渋滞するなか、突然30年以上前の私に出会ってなんだか懐かしい気持になりました。当時私は赤血球の培養をやっていて、エリスロポエチンもクローニングされていましたし、献血などしなくてもジャンジャン赤血球を製造できるようになると信じていましたが、実際やってみると赤血球はなかなか気難しい細胞でうまく培養できず、結局断念したという苦い思い出があります。

現在でも輸血は献血に依存しているので、結局培養はうまくいっていないのでしょう。21世紀の科学の進歩は遅いと思います。この文章はまだ赤血球の培養をやっていた頃に雑談風に書いた文章です。商業出版されたわけではないので、ここに載せます。読み直したところ特に修正すべき点も発見できなかったので、当時のままです。

タイトル: コンドルは飛ぶ -赤芽性造血研究の歩みー

Img1_20241019105901

Img2_20241019110101

Img3_20241019110101

Img4_20241019110101

Img5_20241019112201

Img6

注:現在ではエリスロポエチン産生細胞は腎臓の尿細管間質に分布していることがわかっています。

中田紘介 柳田素子 日本内科学会雑誌 第103巻 第 1 号・pp.160-165 平成26年 1 月10日
腎疾患とEPO産生細胞
https://www.jstage.jst.go.jp/article/naika/103/1/103_160/_pd

 

| | | コメント (0)

2024年10月11日 (金)

続・生物学茶話248: 樹状突起スパイン1

アクチンもチューブリンもその起源をたどれば細菌までたどり着くという生物にとってなくてはならない重要なタンパク質です(1、2)。当然20世紀から大勢の研究者によって研究が進められてきましたが、それぞれ制御が複雑なメカニズムでおこなわれていて一筋縄ではいかない上に、アクチンとチューブリンのかかわりについてはあまり研究が進まず、21世紀も深まった現在まで課題が持ち越されてきたのが現状です。これは疾病に直接関わりのない生物学のテーマは、いくらそれが基本的なものであってもファンドがつかないことが原因でしょう。

アクチンモノマーからポリマー(マイクロフィラメント)がつくられる過程は前回述べましたが(3)、もうすこし詳しくみると、ATPと結合したアクチンモノマーはフォルミン、プロフィリンと結合した後に、これらの補助因子の力を借りて直鎖状にポリマーを形成します(図248-1)。枝分かれ構造をつくるためにはArp2/3 複合体を介する必要があります(図248-1)。これによってアクチン線維(マイクロフィラメント)は樹状の構造をつくることができ、されにそれらが重なり合ってメッシュのような構造をつくることができます。このことは細胞が様々な形態をとってそれをストレスに対抗して維持できることに貢献しています。

チューブリンの重合=微小管の形成については脳科学辞典の微小管の項目に詳しい解説がありますし(4)、また私の過去記事もあるのでご覧下さい(5)。微小管が崩壊してチューブリンモノマーに分解することを習慣的にカタストロフといいます。アクチンと違って、チューブリンはポリマーをつくるためのエネルギーをATPではなくGTPから得ています。

2481a

図248-1 アクチン線維(マイクロフィラメント)の形成

アクチンとチューブリン、あるいはその重合体であるマイクロフィラメントと微小管については昔から詳しい研究が行われてきました。ただそれらがどのような共同作業(クロストーク)を行っているかについては21世紀も深まってようやく少しづつ解明されてきました(6)。

神経細胞もその機能を実現するためにアクチンとチューブリンを大いに利用しています。神経細胞は形態的な観点から見るとかなり特殊な細胞で、たとえば軸索という異常に長く伸びる(場合によっては細胞のサイズの1万倍くらいの長さ)突起をひとつだけ持つ、そしてそれと対照的に短い突起(樹状突起)は複数存在する、というのはどのように説明すれば良いのでしょうか。またそれらの構造はどう違うのでしょうか?

おそらく軸索が1本しかないというのは、細胞が分化する過程であるタイミングで1度しかおこらないアクチンとチューブリンおよび関連タンパク質の共同作業だと思われますが、その結果他の細胞には無い特異な構造が形成されます(7、図248-2)。すなわち軸索は、伸びていく先端が+、後端が-という極性が同じ微小管が Tau というタンパク質でパラレルに束ねられた構造が軸になり、まわりをアクチン線維がリング状に取り囲むという構造になっています(7,8、図248-2)。チューブの外壁にはアクチン線維と直交し、微小管とは平行に位置するスペクトリンのロープが伸びています(8)。先端だけにはフィロポディアのような構造がみられます(7、図248-2)。

一方樹状突起は複数存在するのが普通で、これは分化が終了した後も可塑性があると思われます。樹状突起内部の微小管は MAP2 というタンパク質で架橋されて束ねられています。極性はランダムで、軸索の場合のように先端が+、後端が-ということはありません。アクチン線維によるリング構造もありません。

2482a

図248-2 軸索と樹状突起における微小管とアクチン線維

図248-2の右下図をみると、樹状突起にできるスパインはアクチン線維で充たされており、微小管が伸びていけない状況が描かれています。これはおそらくアクチン線維の緻密さによるとおもわれ、実際 in vitro の実験ですが、微小管は固い物に当たると急速なカタストロフを起こすことが知られています(9)。図248-3の右図のように微小管がスパインとの境界でカタストロフを起こしては、またその境界まで伸長するという状態を繰り返していると、自然に棲み分けができるでしょう。シナプス後細胞のスパインに充満し、その構造を支えているのはアクチン線維であることがわかります。

図284-3の左図はもうひとつの可能性を示したもので、微小管の先にキャッピングが行われ、そのコンプレクスがアクチン線維と結合しているとすると、微小管は伸長を妨げられ、またアクチン線維との結合によって構造が安定化すると思われます。樹状突起スパインでどうなっているかはわかりませんが、細胞分裂の際に中心体から放射状にのびる微小管と細胞膜の裏打ちとなるアクチン線維を連結する構造については、MISP, EB1, p150, myosin-10, cortical dynein などの関与が示唆されています(7)。

2483a

図284-3 微小管がアクチン線維と出会うとき

脳科学辞典などによれば、自閉スペクトラム症では樹状突起スパインの数が増加し、統合失調症・アルツハイマー病・知的障害の場合は減少するそうです(10、11、図284-4)。このことは微小管やアクチン線維がこれらの疾患に関わっていることを示唆します。

2844a

図284-4 樹状突起スパインと脳の疾病

 

参照

1)渋めのダージリンはいかが アクチンの系譜
http://morph.way-nifty.com/grey/2013/09/post-9bba.html

2)渋めのダージリンはいかが やぶにらみ生物論74: 細胞骨格1
http://morph.way-nifty.com/grey/2017/05/post-00ab.html

3)続・生物学茶話247: シナプス後厚肥
http://morph.way-nifty.com/grey/2024/09/post-33e61d.html

4)脳科学辞典:微小管
https://bsd.neuroinf.jp/wiki/%E5%BE%AE%E5%B0%8F%E7%AE%A1

5)渋めのダージリンはいかが やぶにらみ生物論75: 細胞骨格2
http://morph.way-nifty.com/grey/2017/06/post-20be.html

6)Charlotte H. Coles and Frank Bradke, Coordinating Neuronal Actin–Microtubule Dynamics., Current Biology vol.25, R677–R691 (2015)
http://dx.doi.org/10.1016/j.cub.2015.06.020
https://www.cell.com/action/showPdf?pii=S0960-9822%2815%2900714-9

7)Dogterom, M., and Koenderink, G. H., Actin–microtubule crosstalk in cell biology., Nat. Rev. Mol. Cell Biol. vol.20, pp.38–54. (2019)
http://doi: 10.1038/s41580-018-0067-1
https://www.nature.com/articles/s41580-018-0067-1

8)Minkyo Jung, Doory Kim and Ji Young Mun, Direct Visualization of Actin Filaments and Actin-Binding Proteins in Neuronal Cells., Frontiers in Cell and Developmental Biology, vol.8, article no.588556 (2020)
htpp://doi: 10.3389/fcell.2020.588556
https://pubmed.ncbi.nlm.nih.gov/33324645/

9)Marcel E Janson, Mathilde E de Dood, Marileen Dogterom, Dynamic instability of microtubules is regulated by force., The Journal of Cell Biology, vol.161, no.6, pp.1029–1034 (2003)
http://www.jcb.org/cgi/doi/10.1083/jcb.200301147
https://pubmed.ncbi.nlm.nih.gov/12821641/

10)脳科学辞典:樹状突起スパイン
https://bsd.neuroinf.jp/wiki/%E6%A8%B9%E7%8A%B6%E7%AA%81%E8%B5%B7%E3%82%B9%E3%83%91%E3%82%A4%E3%83%B3

11)Ria Fajarwati Kastian, Doctoral Thesis:Shootin1a mediates an F-actin-adhesion clutch for dendritic spine formation and synaptic plasticity. 奈良先端科学技術大学院大学(2019)
https://library.naist.jp/opac/book/92496

 

 

| | | コメント (0)

2024年9月30日 (月)

続・生物学茶話247: シナプス後厚肥

前回記事(1)の電子顕微鏡写真をみると、シナプスの両側に電子密度の濃い領域が見られますが、シナプス前領域ではその厚みが数nmなのに対して、シナプス後領域(postsynaptic density)では40nmくらいあります。分子量60kDのタンパク質の半径は 2.7nm くらいだそうで(2)、だとするとシナプス前領域では1~2分子ぶんの厚みなのに対して、シナプス後領域(シナプス後厚肥)では多数の分子の集合体とか、スキャフォールドタンパク質やアクチン線維などが絡み合った構造の存在が予測されます。

ただしシナプス前領域は盛んにエキソサイトーシスを行う場所ですから、タンパク質が盛んに入れ替わる場所であるにもかかわらず、電子密度が高いというのはある意味驚異的です。それに対してシナプス後領域は受容体を安定的に設置して伝達物質が伝える情報を正しく細胞内に伝達する役割があります。ここで1つの問題はその受容体が「頭でっかち」、すなわち細胞外の部分がアンバランスに巨大であるということです。たとえばAMPA型グルタミン酸受容体は図247-1のような構造になっています。

2471a

図247-1 AMPA((α-アミノ-3-ヒドロキシ-5-メソオキサゾール-4-プロピオン酸)型グルタミン酸受容体の構造

受容体の「根」になっているのは主にアクチン線維であることがわかってきましたが(3)、ここでアクチン線維について少し復習しておきましょう。アクチンは筋肉ではほとんどが重合してアクチン線維を作り、ミオシンとの共同作業によって筋肉を動かすという作業をしています。しかしその他の細胞では単体と線維に半々程度に分布しており、どちらになるかは様々な制御因子によって臨機応変に決められています(4、5、図247-2)。

アクチンは重合するとマイクロフィラメントと呼ばれる線維を形成し、この際ATPと結合したアクチンモノマー(Gアクチン)は線維の+末端(反矢尻端)から線維に結合します。矢尻端のアクチンはADPと結合した形になっており、線維から解離します。この合成と分解は線維端をアダプターが細胞質側に露出している部分、特にC末を利用するしかありません。とは言っても受容体を直接アクチン線維と接続するのは制御が難しくなるので得策ではありません。アクチンは非常に多くの種類の仕事をしているので、シナプス関連の仕事は、その仕事にプロパーで関わっているリンカーやアダプターを介して行うことになります。そうすればそのリンカーやアダプターを制御することによって、シナプス関連システムを制御できます。

2472a

図247-2 アクチンとマイクロフィラメント

プロテオーム解析を行うとシナプス後領域には1000種類もタンパク質があるとされているので、ここでは神経細胞に豊富に含まれているグルタミン酸受容体とそこに結合するタンパク質をリストアップしてみました(3、6、図247-3)。イオンチャネル型グルタミン酸受容体には4つのタイプ(AMPA、NMDA、カイニン酸、デルタ)があり、それぞれに多くのサブタイプがあります。結合するタンパク質はそれぞれのサブタイプによって異なります。ここにリストアップした結合タンパク質はすべて直接または間接にアクチンとの結合を仲介すると考えられているので、これらのタンパク質を介して受容体はアクチン線維に係留されることになります。

ただリストアップされたからといって、これらがどのような構造を形成しているのかはわかりません。このリストにあるSNX27やDLG4(PSD95)はよく知られたタンパク質で、たとえば貝塚と内匠は受容体-PSD95-GKAP-SHANK-CONTACTIN-ACTINというチェーンを中心とした図表を発表していますが(7)、最近はFAM81Aを中心とした液滴にとじこめられた分子集積を考えているようです(8)。

2473

図247-3 各種グルタミン酸受容体とそれらに結合するアクチン調節因子

つまりシナプス後厚肥の高電子密度領域は液相-液相の分離によってタンパク質が閉じ込められることによってできているというのが最近の考え方のようです。このようなシナプス直下の疎水性構造が受容体細胞質パートへの諸因子のアクセスを制限し、正しい情報伝達と受容体の安定に寄与しているのでしょう。このような考え方によれば、アクチン線維はむしろシナプスという構造を形成する段階で、神経細胞の一部を突出させるという形態変化に大きな役割を果たしていると思われます(9)。つまりシナプス後厚肥の構造というより、シナプス後細胞全体の形成と構造にかかわっていると考えた方がよさそうです。

たとえばJ-E Kim らの研究によるとPPLP/CIN(pyridoxal-5′-phosphate phosphatase/chronophin)というアクチン線維調節因子を過剰発現させると樹状突起の形成が阻害され、ノックアウトすると巨大で異常な樹状突起が形成されるそうです(10、図247-4)。液相-液相分離説と受容体-?-アクチン線維の結合の両者の折り合いをどうつけるかという問題はどうなるのでしょうか。やじうまとしてもはらはらします。

2474a

図247-4 マウス樹状突起の形態に及ぼすPLPP/CIN活性の影響

貝塚剛志氏がこの方面の研究を裏話も含めて、彼の研究ブログで解説してくれています(11)。近年のシナプス研究の1断面をビビッドに感じさせてもらいました。FAM81Aについては魚類のホモログは哺乳類と40%くらいしか配列が一致せず、魚類の場合シナプスにも局在しないそうで、シナプス後厚肥の一般的な構造という意味ではゴールはかなたのようです。

 

参照

1)続・生物学茶話246: シナプス前細胞のアクティヴゾーン
http://morph.way-nifty.com/grey/2023/05/post-2bdb34.html

2)大阪大学石島研究室HP
https://www.fbs.osaka-u.ac.jp/labs/ishijima/Molecule-01.html

3)Priyanka Dutta, Pratibha Bharti, Janesh Kumar, and Sankar Maiti, Role of actin cytoskeleton in the organization and function of ionotropic
glutamate receptors., Curr Res Struct Biol., vol.3: pp.277–289 (2021)
doi: 10.1016/j.crstbi.2021.10.001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8569634/

4)脳科学辞典:アクチン https://bsd.neuroinf.jp/wiki/%E3%82%A2%E3%82%AF%E3%83%81%E3%83%B3

5)やぶにらみ生物論75: 細胞骨格2
http://morph.way-nifty.com/grey/2017/06/post-20be.html
http://morph.way-nifty.com/lecture/2020/01/post-c5c25b.html

6)続・生物学茶話152:グルタミン酸 その1 イオンチャネル型グルタミン酸受容体
http://morph.way-nifty.com/grey/2021/07/post-148529.html

7)Takeshi Kaizuka and Toru Takumi, JB Special Review—Neuronal functions and disorders. Postsynaptic density proteins and their involvement in
neurodevelopmental disorder., J. Biochem., vol.163(6): pp.447–455 (2018) doi:10.1093/jb/mvy02
https://pubmed.ncbi.nlm.nih.gov/29415158/

8) Takeshi Kaizuka, Taisei Hirouchi, Takeo Saneyoshi, Toshihiko Shirafuji, Mark O. Collins, Seth G. N. Grant, Yasunori Hayashi, Toru Takumi, FAM81A is a postsynaptic protein that regulates the condensation of postsynaptic proteins via liquid–liquid phase separation., PLOS Biology 22(3): e3002006 (2024)
https://doi.org/10.1371/journal.pbio.3002006
https://journals.plos.org/plosbiology/article%3Fid%3D10.1371/journal.pbio.3002006

9)Jessica C. Nelson, andrea K.H. Stavoe, and Daniel A. colón-Ramos, The actin cytoskeleton in presynaptic assembly., Cell adhesion & Migration vol.7:4, pp.379–387 (2013)
https://doi.org/10.4161/cam.24803
https://www.tandfonline.com/doi/full/10.4161/cam.24803

10)Ji-Eun Kim, Yeon-Joo Kim, Duk-Shin Lee, Ji Yang Kim, Ah-Reum Ko, Hye-Won Hyun, Min Ju Kim & Tae-Cheon Kang, PLPP/CIN regulates bidirectional synaptic plasticity via GluN2A interaction with postsynaptic proteins. Sci. Rep. vol.6, article no.26576.,
DOI: 10.1038/srep26576
https://www.nature.com/articles/srep26576

11)貝塚剛志 研究ブログ
https://researchmap.jp/kaizuka/%E7%A0%94%E7%A9%B6%E3%83%96%E3%83%AD%E3%82%B0

| | | コメント (0)

2024年9月15日 (日)

続・生物学茶話246: シナプス前細胞のアクティヴゾーン

電子顕微鏡でシナプスを見るとシナプス後細胞の細胞膜の電子密度が高いということは、20世紀の半ば頃から知られていました(1)。これは後に postsynaptic density と呼ばれるようになりますが、この日本語訳「シナプス後肥厚」というのは、どうして density を肥厚と訳したのかがわかりません。英語とは関係なく命名したのかもしれません。

確かに図246-1を見ても、シナプス後細胞の高密度領域は明らかにわかります。一方でそれに対面するシナプス前細胞の部分にも、後細胞ほど分厚くはありませんが確かに高密度領域は存在します。シナプス後細胞の場合神経伝達物質の受容体とそれを固定するタンパク質集合体が細胞骨格(スキャフォールド)で固定されているような構造が推測されますが、シナプス前細胞の場合、細胞膜は頻繁にエキソサイトーシスを行っているので流動的で、それでも高密度であるということは多くのタンパク質がここに集中して作業しているに違いありません。

2461a

図246-1 シナプスの電子顕微鏡写真 (wikipedia: postsynaptic density より)

前回(245)の内容から考えて、カルシウムチャネル、SNARE複合体、MUNK、RIMなどがシナプス前細胞のアクティヴゾーンに集積すると思われますが、もう少し詳しく見ていきましょう。シナプス前細胞は電位変化の情報がくるとミリ秒単位の短時間で神経伝達物質を放出しなければなりません。そのためにはあらかじめ準備を万端整えておく必要があります。エンペラドール=メレロとケーザーはカルシウムチャネル、SNARE複合体以外の、あらかじめ準備されているタンパク質のセットを図246-2のようにまとめています(2)。

2462a

図246-2 カルシウムチャネルとSNARE複合体以外のシナプス前細胞のアクティヴゾーンを構成するタンパク質複合体

ここには今まで言及していないタンパク質がいくつか登場しています。まず楽器の名前がつけられた Piccolo/Bassoon は類似した部分を持ち関連性がある非常に巨大なタンパク質で、Piccolo の分子量は約55万ダルトン、Bassoon は約42万ダルトンです。両者はアクティヴゾーンでスキャフォールドを形成する構造タンパク質ですが、それぞれ別の機能も持っており、特に Piccolo がアクチンと結合していることは重要だと思われます(3、4)。

ELKS はPiccolo/Bassoon、Liprinα、Rim1αなどと結合するドメインを持っており(図246-2)、少なくともこれらのタンパク質の立体配置に重要な役割を果たしていると思われます。Liprinαは mDia の活性を抑制することを通じて、アクチン線維の形成に関与しているようです(5)。また RIM と RIM-BP は電位依存性カルシウムチャネルと共に疎水性で相分離を起こすような集合体を形成し、小胞体を細胞膜近辺にとどめる役割を果たしているようです(6、7、図246-3のBの部分)。この1つの相をコンデンセートと呼び、Bはすぐにエキソサイトーシスで神経伝達物質を放出できる状態にあるシナプス小胞が集合している状態とされています。ただ図246-3のようにはっきりしたA相、B相、それ以外の部分というような境界があるかというと、私にはまだ信じられません。

2463a

図246-3 コンデンセート説

図246-4はウィキペディアの active zone という項目(8)に掲載されてあった図で、とりあえず報告されているタンパク質とそれらの関係をまとめたものです。このようなイメージで最終的に良いのか(正しいのか)どうかはわかりませんし、すべてが網羅されているわけでもありませんが、関係タンパク質を一覧するには便利かもしれないので貼っておきます。スペクトリンがVDCCと結合するという論文は、アンキリンを介してというもの以外はみつかりませんでした。

2464a

図246-4 アクディヴゾーンのタンパク質複合体(ウィキペディアの模式図)

図246-5は参照文献2などを参考に調べた結果ですが、やはり哺乳類が保有するアクティヴゾーンのタンパク質とホモローガスなタンパク質を線虫(C.elegance)もショウジョウバエ(D.melanogaster)も保有しています。前回(245)のシンタキシンでもわかるように、アクティヴゾーンにおけるシナプス小胞の集積と高速で行われるエキソサイトーシスをサポートするメカニズムは、これらの生物が分岐する以前のエディアカラ紀あるいはそれ以前に確立されていて、今生きている生物はそれをわずかな適応と改良を重ねてはいるものの、数億年の間基本的に引き継いでいることは明らかです。

2465a

図246-5 マウス、線虫、ショウジョウバエにおけるシナプス前細胞アクティヴゾーンタンパク質 名前は別々に命名されていますがホモロジーがあり、各グループ(RIM, Liprin, ELKS/CAST, Munk13)は同根のタンパク質とされています

 

参照

1)Sanford L. Palay, SYNAPSES IN THE CENTRAL NERVOUS SYSTEM, J Biophys Biochem Cytol. vol.2(4): pp.193-202. (1956)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2229686/

2)Javier Emperador-Melero and Pascal S Kaeser, Assembly of the presynaptic active zone., Current Opinion in Neurobiology vol.63: pp.95–103 (2020)
DOI: 10.1016/j.conb.2020.03.008
https://pubmed.ncbi.nlm.nih.gov/32403081/

3)Fenster, Steven D.; Kessels, Michael M.; Qualmann, Britta; Chung, Wook J.; Nash, Joanne; Gundelfinger, Eckart D.; Garner, Craig C., Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. The Journal of Biological Chemistry. vol.278 (22): pp.20268-20277 (2003) doi:10.1074/jbc.M210792200
https://pubmed.ncbi.nlm.nih.gov/12654920/

4)Eckart D. Gundelfinger, Carsten Reissner and Craig C. Garner,
Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone., Frontiers in Synaptic Neuroscience., vol.7, article 19, (2016)
doi: 10.3389/fnsyn.2015.00019
https://www.frontiersin.org/journals/synaptic-neuroscience/articles/10.3389/fnsyn.2015.00019/full

5)Satoko Sakamoto, Shuh Narumiya & Toshimasa Ishizaki, A new role of multi scaffold protein Liprin-α. Liprin-α suppresses Rho-mDia mediated stress fiber formation., BioArchitecture vol.2, Issue 2 (2012)
https://doi.org/10.4161/bioa.20442
https://www.tandfonline.com/doi/full/10.4161/bioa.20442

6)細川智永 シナプス伝達と可塑性を担うタンパク質の集合と区画化 
Journal of Japanese Biochemical Society vol.94(4): pp.523-528 (2022)
doi:10.14952/SEIKAGAKU.2022.940523
https://seikagaku.jbsoc.or.jp/10.14952/SEIKAGAKU.2022.940523/data/index.html

7)Xiandeng Wu, Qixu Cai, Zeyu Shen, Xudong Chen, Menglong Zeng, Shengwang Du, Mingjie Zhang, RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation., Mol Cell vol.73(5): pp.971-984.e5. (2019)
doi: 10.1016/j.molcel.2018.12.007
https://pubmed.ncbi.nlm.nih.gov/30661983/

8)Wikipedia: active zone
https://en.wikipedia.org/wiki/Active_zone

 

 

 

| | | コメント (0)

2024年9月 8日 (日)

続・生物学茶話245:シナプスとSNARE複合体

神経伝達はシナプスを経由して行われますが、そのシナプスが機能を発揮するためのメカニズムについては、これまで学習してきたように「1.シナプス前細胞のシナプス小胞が細胞質から神経伝達物質をとりこみ、2.それをシナプスのアクティブゾーンからエキソサイトーシスでシナプス間隙に放出し、3.放出された神経伝達物質をシナプス後細胞が受け取る」という順序で行われることがわかっています。

そのためにはまずシナプス前細胞のバリコシティー(ふくらみ)が電位変化を察知し、それを生化学的プロセスに変換しなければなりません。これをおそらくすべての神経を持つ生物はカルシウムチャネル(1、2)を使ってやっていると思われますが、おそらくというのは有櫛動物だけはほかの門の生物とは非常に異なる神経システムを持っていてはっきりとしない点があるからです。そのため生物進化において神経のルーツがひとつであるのかふたつなのかという論争が続いているほどです(3、4)。ただ有櫛動物も筋収縮についてはカルシウムシグナリングに依存しているようですし(5)、神経細胞においても電位変動を最初に感知し、カルシウムの流入によって生化学的変化を起動しているのはおそらく有櫛動物の場合もカルシウムチャネルだと考えられています(6)。カルシウムチャネル自体の歴史は非常に古く、ルーツは細菌までたどることができます(2、7)。ですから神経伝達のためのツールとして使うのは多細胞生物による流用です(8)。

電位依存性カルシウムチャネル(voltage-dependent calcium channel: VDCC)についてはすでに参照文献2で詳しく述べましたが、この分野の研究は進んでおり、ここでは京都大学森研究室がHPに掲載している図を多少改変して貼っておきます(9、図245-1)。

2451

図245-1 電位依存性カルシウムチャネルの立体構造


森研究室の研究では、RIMファミリーのタンパク質が電位依存性カルシウムチャネルとシナプス小胞を繋ぐ役割を担っており、シナプス小胞のエキソサイトーシスにかかわっているとしています(9)。今回はそのシナプス小胞のエキソサイトーシスについて触れたいと思います。

シンタキシンは一般に細胞内小胞輸送において膜融合に関わるタンパク質のグループですが、シナプス小胞が細胞膜と融合し、エキソサイトーシスによってシナプスに神経伝達物質を放出するという神経細胞特有のプロセスにおいても主役の1つを担っています。シンタキシンについては脳科学辞典に詳しい解説があります(10)。そこにある図のひとつを図245-2とします。

細胞膜のタンパク質であるシンタキシンのH3ドメインとシナプス小胞膜のタンパク質であるシナプトプレビンがSNAP-25を介してつながる構造をSNARE複合体と呼び、この構造形成によって小胞と細胞膜が結合しエキソサイトーシスの契機となります(図245-2)。

小胞と細胞膜がのべつ幕なしに結合すると困るので、通常はHabcドメインがH3ドメインと結合していてSNARE複合体ができないOFFの状態になっています。カルシウムチャネルから情報がくると立体構造が変化して、SNARE複合体が形成されることになります(図245-2)。

2452

図245-2 シナプス小胞が開口放出を行う前に形成されるSNARE複合体の立体構造模式図

脳科学辞典によると「シンタキシンファミリーは少なくとも16種類のアイソフォームが存在し、そのうち多くが線虫から哺乳類に至るまで進化的に保存されている」と記載されています(10)。図245-3で各動物におけるそれらのアイソフォームの存否をまとめてみました。1A、4、5、6、7、16、17、18の8つのアイソフォームは各動物が保有しています。このことはカンブリア紀以前の段階でこれらのアイソフォームは確立され、各門の動物がその後引き継いだことを意味します。

頭索動物(ナメクジウオ)、尾索動物(ホヤ)、円口類(ヤツメウナギ)、棘皮動物(ウニ)、半索動物(ギボシムシ)などについても情報が得られると、より詳しく生物進化とシンタキシンの関係がわかると思いますが、この図でもヒトにしかないアイソフォーム(シンタキシン10)、後口動物だけ(あるいは哺乳類だけ)にみられるもの(シンタキシン1B、11、19)があることは注目されます。

小胞と細胞膜が結合するようなシステムは多くの細胞で必要なので、シンタキシンはほとんどの細胞に存在しますが、神経細胞と分泌細胞に特異的に存在するのはシンタキシン1A、1Bとされています。ただまだ局在がわからないもの、cDNAしか知られていないものなどがあり、シナプスで使われるシンタキシンのアイソフォームは完全には解明されていないようです(10)。

2453

図245-3 シンタキシンのアイソフォーム

すでに「小胞と細胞膜がのべつ幕なしに結合すると困るので、通常はHabcドメインがH3ドメインと結合していてSNARE複合体ができないOFFの状態になっています」と述べましたが、MUNK18はシンタキシン1の不活性なクローズドフォームを維持するために機能しています。これに対してカルシウム存在下でシナプトタグミンはシンタキシン1を活性化し、SNARE複合体を形成するためのコンフォメーション変化に寄与することにより膜融合を促進します。MUNK13もシンタキシン1の活性化に寄与します(11、12、図245-4)。

図254-4のQaは、シンタキシンのH3ドメインにあるSNAREモチーフです。SNARE複合体はこのQaのほか、SNAP-25AのQb・Qcモチーフおよびシナプトプレビン2のRモチーフによって構成されています(図245-4)。

2454a

図245-4 シンタキシン1のコンフォメーション変化とSNARE複合体の形成  カルシウムイオンの流入によって、シンタキシン1はクローズドフォームからオープンフォームに変化しSNARE複合体を形成する

SNARE複合体による膜融合についてはさまざまなモデルがありますが、Shen Wang らが提出しているモデルは図245-5のようなものです。これによるといったんシナプトブレビン2-Munc18-Munc13-シンタキシンが複合体を形成することによって(b)シンタキシンが活性化し(c)、Muncが解離すると共にSNAP-25が結合してSNARE複合体が形成され、シナプス小胞と細胞膜が結合するとしています。

2455

図245-5 Shen Wang らの膜融合モデル

一方京都大学の森研究室HPのモデルでは、カルシウムチャネルがα-RIMを介してシナプス小胞を細胞膜につなぎ止めるということになっていて(9)、議論はつきないようです。ポイントはカルシウムチャネルが直接的に膜融合にかかわっているのか、それともカルシウムの流入を介してのみかかわっているのかということです。

 

参照

1)脳科学辞典 電位依存性カルシウムチャネル
https://bsd.neuroinf.jp/wiki/%E9%9B%BB%E4%BD%8D%E4%BE%9D%E5%AD%98%E6%80%A7%E3%82%AB%E3%83%AB%E3%82%B7%E3%82%A6%E3%83%A0%E3%83%81%E3%83%A3%E3%83%8D%E3%83%AB

2)続・生物学茶話191: 電位依存性カルシウムチャネル
http://morph.way-nifty.com/grey/2022/10/post-d9a164.html

3)Nature digest, Vol. 11 No. 8 News 深まるクシクラゲの謎
https://www.natureasia.com/ja-jp/ndigest/v11/n8/%E6%B7%B1%E3%81%BE%E3%82%8B%E3%82%AF%E3%82%B7%E3%82%AF%E3%83%A9%E3%82%B2%E3%81%AE%E8%AC%8E/54610

4)Eisuke Hayakawa et al., Mass spectrometry of short peptides reveals common features of metazoan peptidergic neurons., Nature Ecology & Evolution, vol.6, pp 1438-1448 (2022)
https://www.nature.com/articles/s41559-022-01835-7

5)Robert W Meech, Andre Bilbaut Deceased, Mari-Luz Hernandez-Nicaise, Electrophysiology of Ctenophore Smooth Muscle. Methods Mol Biol., vol.2757, pp.315-359. (2024)
doi: 10.1007/978-1-0716-3642-8_15.
https://pubmed.ncbi.nlm.nih.gov/38668975/

6)Adriano Senatore, Hamad Raiss and Phuong Le, Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora., Front. Physiol. vol.7: article 481.(2016)
doi: 10.3389/fphys.2016.00481
https://pubmed.ncbi.nlm.nih.gov/27867359/

7)入江克雅 下村拓史 国立生理学研究所プレスリリース 細菌のセンサーから紐解く 神経刺激を伝えるタンパク質の太古の姿
https://www.nips.ac.jp/release/2020/02/post_409.html

8)ウィキペディア 流用(生物学)
https://ja.wikipedia.org/wiki/%E6%B5%81%E7%94%A8_(%E7%94%9F%E7%89%A9%E5%AD%A6)

9)京都大学大学院工学研究科 森研究室HP
http://www.sbchem.kyoto-u.ac.jp/mori-lab/research-a.html

10)脳科学辞典 シンタキシン
https://bsd.neuroinf.jp/wiki/%E3%82%B7%E3%83%B3%E3%82%BF%E3%82%AD%E3%82%B7%E3%83%B3

11)脳科学辞典 SNARE複合体
https://bsd.neuroinf.jp/wiki/SNARE%E8%A4%87%E5%90%88%E4%BD%93

12)Shen Wang, Yun Li, Jihong Gong, Sheng Ye, Xiaofei Yang, Rongguang Zhang & Cong Ma, Munc18 and Munc13 serve as a functional template
to orchestrate neuronal SNARE complex assembly., Nature Commun., 10:69 (2019)
https://doi.org/10.1038/s41467-018-08028-6
https://www.nature.com/articles/s41467-018-08028-6

 

| | | コメント (0)

2024年8月29日 (木)

続・生物学茶話244:記憶の科学のはじまり

243では記憶の源流は馴化にあり、それはニューロンにおける代謝の変化やそれに関連しておこるシナプスの電子顕微鏡的な微妙な変化がおこることを述べましたが(1)、馴化は練習することでだんだん上手にできるようになり、数分~数時間の短期的なものでなく、数日~数週間も持続する長期の記憶を獲得することもできるようになります(2)。

生化学的な反応は流動的であり、基質・酵素の量や制御因子などの反応条件が変化すれば直ちに変化するので、安定した記憶を維持するためには何か別のシステムによらなければなりません。数日~数週間も持続する変化を維持できるシステムとは何か? それに最初に答えを出したのはベイリーとチェンです。

彼らの業績を紹介する前に、「バリコシティー」という言葉の説明が必要です。専門家以外にはあまり使われませんが日本語訳は「神経膨隆部」で、神経細胞のシナプス前細胞で形成されるシナプス小胞が集積したこぶ状のふくらみのことです。一般的にはシナプスをつくらなくてもそう呼びますが(3)、ベイリーとチェンの論文にあるのは presynaptic varicosity で、シナプス前細胞の終末にあるふくらみです。

彼らは馴化の長期記憶の実験では、30秒ごとに10秒アメフラシの水管に触れるという操作を10回行い、これを1セッションとして1日10回のセッションを10日間おこないました。これによって馴化について長期間の記憶を獲得させることができます。また鋭敏化の実験では別のグループに100mA-2秒の電気ショックを1.5時間ごとに4回与えるというセッションを4日間続けました。これによって鋭敏化の長期記憶を獲得させました。そうしてコントロール群と長期記憶獲得群それぞれの感覚ニューロンのバリコシティーを数えると、図244-1の様な結果となりました(4)。

2441a_20240829111001

図244-1 馴化時・鋭敏化時における感覚神経のバリコシティーの数

馴化群と対照群の差が小さいと思われるかもしれませんが、図244-2のように馴化群の場合、それぞれのバリコシティーにおけるシナプス近傍小胞体の数が馴化群では減少している(アクティブゾーンに接する小胞体が少ない)ことを考慮に入れる必要があります。それぞれのシナプスが質的に変化しています。

ベイリーとチェンの研究によって、それまで謎に包まれていた記憶のメカニズムが、圧倒的にシンプルな形で生物学というまな板の上にのせられました。そういう意味では、彼らはカンデルと共にノーベル賞を受賞すべきだったかもしれません。小胞体がどのようなメカニズムで細胞膜とつながるかについては近々にここでも取り上げる予定です。

2442a

図244-2 バリコシティーの量的・質的変化

ペルオキシダーゼ(HRP)と適切な基質を用いると感覚神経を標識し、光学顕微鏡や電子顕微鏡写真で感覚神経末端を検出することができます。図244-3によると電子顕微鏡でみた感覚神経の軸索末端(バリコシティー)で、介在神経の樹状突起とシナプスを形成し、電子密度の高いアクティブゾーンがみられます。この介在神経には、非常に狭い領域に4つのシナプスが集中しています。

2443a

図244-3 標識した感覚神経と介在神経のシナプスの電子顕微鏡写真

彼らはさらに鋭敏化の長期記憶においては、シナプスのアクティブゾーンの増大などの質的変化よりも、シナプスの数が増えたことが決定的に重要であることを示しました(5)。図244-4は長期鋭敏化を獲得した際の感覚ニューロンの変化を示しています。

感覚ニューロンの軸索は非常に多くの枝分かれ構造を新たに形成し、シナプスの数が増加していることがわかりました(図244-4)。このような変化はタンパク質の新たな合成による細胞構造の変化を前提としているので、数時間程度では不可能で、長期の学習による継続的な構造形成が必要になります。その代わり簡単には失なわれない長期の記憶を獲得することができます。

2444a

図244-4 長期鋭敏化という学習を行った感覚ニューロンの変化

キムらはシナプスは形成されていたけれども有効に使われていなかったものが、長期記憶の際に有効なものに変化していく、すなわち小胞体が形成されアクティブゾーンから神経伝達物質を放出するようになることを報告しました(6)。このプロセスはmRNAがあれば数時間で行われますが、なければ十数時間かかります(6)。いったん構造が形成されていれば長期のトレーニングは不必要で、それより短い時間で動作を思い出すことができるということでしょう。

その後の研究によって、ベイリーとチェンがアメフラシで発見した記憶のメカニズムは、私たち哺乳類の海馬の記憶メカニズムと原理的に同じであることが明らかになってきました(7)。

参照

1)続・生物学茶話243:記憶の源流をたどる
http://morph.way-nifty.com/grey/2024/08/post-49f9de.html

2)「記憶のしくみ 上」 ラリー・R・スクワイア エリック・R・カンデル 講談社ブルーバックス (2009) p.122

3)東京医科歯科大学 教育用資料 シナプス伝達の修飾
https://www.tmd.ac.jp/artsci/biol/pdf2/neuromod.pdf

4)Craig H. Bailey and Mary Chen, Long-term memory in Aplysia modulates the total number of varicosities of single identified sensory neurons., Proc. Nati. Acad. Sci. USA, Vol. 85, pp. 2373-2377, (1988)
DOI: 10.1073/pnas.85.7.2373
https://pubmed.ncbi.nlm.nih.gov/3353385/

5)Craig H. Bailey and Mary Chen, Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia. The Journal of Neuroscience, vol.9, no.5, pp.1774-1780 (1989)
DOI: 10.1523/JNEUROSCI.09-05-01774.1989
https://pubmed.ncbi.nlm.nih.gov/2723749/

6)Joung-Hun Kim, Hiroshi Udo, Hsiu-Ling Li, Trisha Y Youn, Mary Chen, Eric R Kandel, Craig H Bailey, Presynaptic Activation of Silent Synapses and Growth of New Synapses Contribute to Intermediate and Long-Term Facilitation in Aplysia., Neuron, vol.40, pp.151-165 (2003)
https://doi.org/10.1016/S0896-6273(03)00595-6
https://www.sciencedirect.com/science/article/pii/S0896627303005956

7)Craig H. Bailey, Eric R. Kandel, and Kristen M. Harris, Structural components of synaptic plasticity and memory consolidation.,
Cold Spring Harb Perspect Biol., vol.7(7):a021758. (2015)
doi: 10.1101/cshperspect.a021758.
https://pubmed.ncbi.nlm.nih.gov/26134321/

 

| | | コメント (0)

2024年8月19日 (月)

続・生物学茶話243:記憶の源流をたどる

生物の歴史をどこまで遡れば記憶の起源にたどり着くのでしょうか? ルネ・デカルトは「我思う故に我あり (Cogito ergo sum)」という名言を残しましたが、スクワイアとカンデルはこれは誤りであり「我々は、たんに考えるから、我々なのではなく、考えてきたことを思い出すことができるからこそ、我々なのである」と主張します(1、図243-1)。

私も記憶しそれを思い出すことはコギト(自意識)そのものであると思います。最も始原的な記憶とは何かというと、それは馴化(じゅんか)です。感覚器→感覚神経→運動神経→筋肉という4つのパーツを獲得し、方向性を持った情報伝達が可能になったとき、生物はおそらくほぼ同時に馴化という始原的な記憶を獲得しました。

カンデル、ベイリー、チェンらは貝殻をもたない軟体動物であるアメフラシを実験動物に使って、馴化やその逆の鋭敏化という問題に取り組みました。哺乳類の脳には1000億~1兆個レベルのニューロンがありますが、アメフラシは約2万個のニューロンしかなく、しかもそのニューロンの細胞体のサイズは直径200-1000μmという哺乳類に比べると一桁巨大なので、実験をおこなうには圧倒的に有利です。たとえば電極を刺したり、マイクロシリンジで薬物を細胞に投与したりする操作が容易にできます。

2431a

図243-1 スクワイアとカンデルの著書 講談社ブルーバックス(2013)

馴化や鋭敏化を含めて、記憶は神経伝達がシナプスというニューロンとニューロンを連結するメカニズムを介して行われるということが現在では明らかになっています。シナプスを介した情報伝達には方向性があり、1)シナプス前細胞に存在するシナプス小胞がシナプスを形成する細胞膜と融合合体し、2)シナプス小胞に含まれる神経伝達物質をシナプス間隙に放出し、3)その神経伝達物質をシナプス後細胞表層の受容体が受け取って細胞内に情報を伝えるという方式によって行われます。このメカニズムはアメフラシでも哺乳類でも同じです。フランスの解剖学者ルネ・クートー (René Couteaux) はこのようなメカニズムを発見しましたが(2、3、図243-2)、例えば脳科学辞典のシナプス小胞の項目に名前がでていないように、彼の業績は軽視されがちのようです。

2432a

図243-2 ルネ・クートーの肖像と電子顕微鏡写真  (A)(B)Arrow: シナプス特有の電子密度の高い構造 Arrow head: 中味をシナプスに放出しているシナプス小胞 (D) シナプス小胞は小胞体から補給される

同じ刺激が連続的に発生したとき、もし情報伝達の径路に生化学的なプロセスが噛んでいるとすれば、時間が経てば反応物質が枯渇してプロセスの続行に支障をきたすことは明らかです。ですからシナプスが実現したと思われるエディアカラ紀からこの意味での馴化という現象は存在したと思われます。しかしたとえば波が打ち寄せるというような現象に対して常にこのようなことが起こっているとすると、反応物質は常に枯渇しているということになります。そうなると突発的な刺激に対して反応できないどころか、神経系を持つ意味が失われます。ですからそこには進化の圧力が働いて、反応物質が枯渇する前に積極的に反応を停止するメカニズムが生まれたことは想像できます。

おそらく積極的と思われる馴化機構について最初に示唆を与えたのはクレイグ・ベイリーとマリー・チェンです(4、5)。彼らはアメフラシを用いて、短期馴化のプロセスにおいてシナプスそのものに大きな形態的変化はあらわれないが、シナプス前細胞の小胞放出部位に結合しているシナプス小胞の数が減少することをみつけました(図243-3、まるでシナプス小胞がシナプスを避けているように見えます)。このようなメカニズムなら神経伝達物質の枯渇は防げます。

またこのニューロンの中のカリウムチャネルが活性化し→ニューロンの脱分極持続時間の短縮→カルシウムチャネルを通って流入するカルシウム量の減少→神経伝達物質放出量の減少、という現象が起こるということがわかっています(6)。これは「波が打ち寄せるというような無害な繰り返しに対しては反応しなくて良い」という始原的な記憶機構と言えると思います。この記憶は強い刺激が来れば初期化されてしまいます。

2433a

図243-3 馴化とシナプス ベイリーとチェンの電子顕微鏡写真

波など弱く無害な刺激の場合は馴化するのが妥当ですが、嵐がきたりして激しい刺激があるとそういうわけにもいかないでしょうし、特にカンブリア紀にはいると他の生物に食いつかれたりする危険が発生して、これに対応するためには神経系をアラート状態にする、すなわち鋭敏化が必要になります。

鋭敏化を実現するためには、鰓を閉じる筋肉が敵の攻撃を察知する全身の感覚神経と接続している必要があります。そのためには感覚神経と運動神経の直接接続だけでは感覚神経のシナプスが多すぎてバランス的に無理で、別個に介在神経(介在ニューロン)が必要となります。ここで様々な場所での負傷状況を認識して筋肉に伝えるという新機軸ができました(図243-4、Bは尾が強い刺激を受けた場合 この図は参照文献(8)にあるものの再掲です)。これによって負傷すると致命的な鰓を閉じ、さらに強力な刺激に対しては、煙幕を張って逃走するという行動を行います。

図243-4には描いてありませんが、介在ニューロンは主としてセロトニンという神経伝達物質をシナプスに放出し、感覚神経はこれを受けてcAMPを産生し、cAMPで活性化されるタンパク質リン酸化酵素(Aキナーゼ)の作用でカリウムチャネルをリン酸化し、これを不活化することによって脱分極時間を延長します。脱分極時間が延長されるとカルシウムチャネルが開いたままとなりカルシウムが大量に流入してシナプスの活動が活性化されます。一種の正のフィードバックです。もう忘れているかもしれませんが、これは高校生物で学習します(7)。

2434a

図243-4 アメフラシの馴化(A)と鋭敏化(B)に関係した神経ネットワーク 詳細は参照(8)をご覧下さい

私見では鋭敏化のメカニズムは、おそらくカンブリア紀になってからできたものだと思います。エディアカラ紀にもそれがあった方が良いという刺激は存在したのでしょうが、それは日常的におこることではなく、進化圧力となるほどではなかったと思います。カンブリア紀になると敵に襲われることが日常的におこるようになったので、戦うとか防備するとか逃走するとかの前段階として神経系が鋭敏化を準備することには強い進化圧力があったに違いありません。

馴化はコギト(自意識)と直結するものではないと思いますが、鋭敏化はコギトに直接進化していったと思います。敵を認識すると言うことは、自分を認識するということと同じではないでしょうか。そう考えるとアメフラシがコギトを持っていても不思議ではありません。

シナプス周辺の変化はある程度安定しており、これが記憶の源泉となります。その安定性によって短期記憶から長期記憶までのバラエティをつくることもできます。コギトの問題は別としても、馴化と鋭敏化が記憶の源流であることには間違いなさそうです。そして馴化も鋭敏化も、これまで述べてきたようにシナプスの活動を変化させることによって実現します(9)。

ここで述べてきた非陳述型短期記憶についてまとめると

1.記憶はシナプス強度の変化とその持続によって行われる
2.シナプス強度の変化はシナプス前細胞から放出される神経伝達物質の量に依存する
3.シナプス強度の変化は感覚神経と運動神経だけでなく、介在神経細胞でもおこる
4.非陳述記憶は記憶を専業とするニューロンによって行われるのではなく、関連する神経経路全体に内蔵される

陳述記憶とはその内容を絵・言葉・文字などで想起することができる事実に関する記憶であり、そうではないアメフラシのエラ閉じなどは非陳述記憶ということになります。短期とは通常数分~数十分のことです。

 

参照

1)「記憶のしくみ」 ラリー・R・スクワイア エリック・R・カンデル 講談社ブルーバックス (2009) まえがき

2)Constantino Sotelo, The History of the Synapse., Anat. Rec., vol.303 pp.1252–1279 (2020) doi: 10.1002/ar.24392
https://pubmed.ncbi.nlm.nih.gov/32323495/

3)Shigeru Tsuji, René Couteaux (1909–1999) and the morphological identification of synapses., Biology of the Cell vol.98, Issue 8, pp.503-509 (2012)
https://doi.org/10.1042/BC20050036
https://onlinelibrary.wiley.com/doi/epdf/10.1042/BC20050036

4)Craig H. Bailey, Mary Chen, Structural plasticity at identified synapses during long-term memory in Aplysia., Journal of Neurobiology vol.20, pp.356-372 (1989)
https://doi.org/10.1002/neu.480200508
https://onlinelibrary.wiley.com/doi/10.1002/neu.480200508

5)Craig H. Bailey, Mary Chen, Morphological basis of short-term habituation in Aplysia., The Journal of Neuroscience: vol.8, issue 7, pp.2452-2459 (1988)
https://www.jneurosci.org/content/8/7/2452.short

6)伊藤悦朗 学習:とくにアメフラシの場合
https://cns.neuroinf.jp/jscpb/wiki/%E5%AD%A6%E7%BF%92%EF%BC%9A%E3%81%A8%E3%81%8F%E3%81%AB%E3%82%A2%E3%83%A1%E3%83%95%E3%83%A9%E3%82%B7%E3%81%AE%E5%A0%B4%E5%90%88

7)動物の生きる仕組み事典 学習:とくにアメフラシの場合
https://cns.neuroinf.jp/jscpb/wiki/%E5%AD%A6%E7%BF%92%EF%BC%9A%E3%81%A8%E3%81%8F%E3%81%AB%E3%82%A2%E3%83%A1%E3%83%95%E3%83%A9%E3%82%B7%E3%81%AE%E5%A0%B4%E5%90%88

8)続・生物学茶話142: アメフラシとセロトニン
http://morph.way-nifty.com/grey/2021/05/post-625abf.html

9)JT生命誌研究館 進化研究を覗く 神経記憶III
https://www.brh.co.jp/salon/shinka/2016/post_000024.php

 

 

| | | コメント (0)

より以前の記事一覧