カテゴリー「生物学・科学(biology/science)」の記事

2017年10月13日 (金)

やぶにらみ生物論89: ヒトゲノム

ヒトゲノムについて語る前に、まずゲノム(英語ではジノム)とはなにか、どう定義するのでしょうか? これがなかなか一筋縄ではいきません。とりあえずウィキペディアの定義では下記のようになっています(1)。

---------------
In modern molecular biology and genetics, a genome is the genetic material of an organism. It consists of DNA (or RNA in RNA viruses). The genome includes both the genes (the coding regions), the noncoding DNA and the genetic material of the mitochondria and chloroplasts.

拙訳:現代の分子生物学および遺伝学において、ゲノムはひとつの生命体の遺伝物質を指します。それはDNA(RNAウィルスではRNA)で構成されています。ゲノムは遺伝子(コーディング領域)、非コーディングDNA、ミトコンドリアと葉緑体の遺伝物質を含みます。
---------------

ところが日本語版のウィキペディアでは、たとえばヒトゲノムといった場合、ヒトのミトコンドリアの遺伝物質は含まないとも解釈できる記載があるので、英語版とは若干ニュアンスの違いが感じられます(2)。日本語版の方がわかりやすい感じもするので、ここではミトコンドリアのゲノムは含まないことにします。

ここでコーディング、非コーディングという言葉が出てきました。コーディングDNAとは、その部分のDNAが転写されてmRNAとなり、さらに翻訳されてタンパク質となるDNAの領域を意味します。それ以外の部分はすべて非コーディングDNAです。非コーディングDNAには転写されてリボソームRNAやトランスファーRNAを生成するための領域、転写調節因子の結合部位、偽遺伝子、トランスポゾンなどを含みます。

ではヒトゲノムにおいて、コーディング領域、非コーディング領域はどのくらいの割合になっているのでしょうか? 図1をみてみましょう(図1は3、4などを参照して作成)。実際にその塩基配列がタンパク質と対応している、狭い意味でのコーディング領域、すなわちエクソンは全ゲノムの1.3%に過ぎません。ヒトをマシンとしてみると、非常に効率が悪いシステムです。それはもちろんヒトは誰かが設計して作った作品ではなく、進化の結果として様々な歴史をたっぷりしょって生まれてきたからです。

エクソン以外にイントロンは遺伝子の一部です。rRNA、tRNA、snRNA、miRNAなどさまざまなRNAに対応するDNAも遺伝子です。進化の過程で不要になり崩壊過程にある遺伝子は偽遺伝子です。また遺伝子を制御するために、転写因子と結合するDNAの領域もその意義が明確です。しかしこれら素性と意義が明確なDNA領域を全部たしても、ゲノムの半分にもなりません。ゲノムのそれ以外のほとんどの部分はトランスポゾンで構成されています(図1)。

A

トランスポゾンはその転移能力が活発に発揮されると、頻繁に遺伝子に割り込んだり非相補的な組み換えがおこったりしてホストが死んでしまう可能性が高いので、ある程度暴れたら転移能力を失ってホストと共存します。そうなった生き物しか生き残れません。ヒトのトランスポゾンもその原理は同様で、ほぼすべてのトランスポゾンにおいてトランスポゼースの遺伝子が壊れて不活化しているので、自発的に転移することはできません(5)。

万一転移がおこってその細胞に不具合が発生しても、体細胞では代替する他の細胞がいるので、がんが引き起こされるような特殊な場合を除いては問題はおこりません。しかし生殖細胞ではそこからうまれた細胞がすべて転移したトランスポゾンを保有することになるので、深刻な疾病を引き起こす可能性があります。

例えばAluの転移が原因とみられる疾病も数多く知られていますが(6)、それらのほとんどは遺伝病であり、遠い過去に起こったことが現在まで引き継がれていると考えられます。

Alu も含めてSine は生殖巣において転写されることが知られており、しかもホストにストレスがかかるとその転写量が膨大になるそうです(7)。このことは何か意味がありそうな気がします。

コーディング領域の遺伝子については、ウィキペディアにグラフが出ていたので転載しておきます(8)。意外に構造タンパク質や酵素の割合は高くなく、転写因子・DNA結合因子・トランスポーターなどの遺伝子が多くの領域を占めていることがわかります。

A_2


ヒトゲノムという概念は抽象的なものですが、その実体は染色体にあります。染色体を顕微鏡で見て形態を観察する技術は19世紀から開発されており、サットンはそれによって20世紀初頭に遺伝因子=染色体という説を唱えました。しかしそれからヒトの染色体は何本あるかという結論までは50年以上の歳月を要しました。アルベルト・ルヴァンとジョー・ヒン・チョー(図3)がヒトの染色体は46本であると報告したのは、ワトソンとクリックがDNAの構造を解明してから3年も後の1956年でした(9)。

A_3

色素による染色で分別されたヒト染色体一覧を図4に示します。点線はセントロメアの位置です。X染色体とY染色体はあまりにも形態が異なりますが、この点については次回の記事に書く予定です。

A_4

古典的なギムザ染色法によって染色体を分別する方法をGバンド法といいます。図5にその例を示します。ATリッチな部位が濃く染まり、GCリッチな部位は薄く染まるとされています(10)。今ではFISH(Fluorescent InSitu Hybridization)法によって染色体の分別がおこなわれます。この原理は図6で説明しますが、図5の下図ではAlu 配列を標的として、緑色蛍光色素で染色しています(11)。Alu の多い場所が緑色に染色されます。Alu配列のある場所に大きな偏りがあることがわかります。21番の染色体セットは片方が染色され、片方は染色されていませんが(11)、これが実験上のエラーなのか実際にそうなのかはわかりません。

A_5

それぞれの染色体にはそれぞれ別の遺伝子が乗っているわけですし、遺伝子以外の決まった配列もそこそこあるわけですから、その相補性配列を持つDNAを合成して標識をつければ正確かつ容易に各染色体を分別できるはずです。

図6のように相補性のDNAに例えばビオチンを結合させ、これに「アビジン+蛍光色素」を結合させると(ビオチンとアビジンは強力に結合する)、染色体をそれぞれ特異的に染色することができます。ビオチン-アビジンのセットでなくても、強力に接着する化学物質でDNAまたは蛍光色素と結合する組み合わせのセットなら使えます。

それぞれ別の色に光る蛍光色素を使えば、23対の染色体をそれぞれ色で識別することができます(図6)。100年も四苦八苦して分別していた染色体を、科学技術のちょっとした進展によって、わずかな時間で正確に分別できるようになりました。

A_6


遺伝病の中には遺伝子のミクロな変化に起因するもの他に、染色体の本数の異常などダイナミックな染色体の変化による者があり、それらは染色体検査によって診断できます。最も有名なのはダウン症候群で、この疾患の原因が21番染色体が3本ある(トリソミー)ことによることを解明したのはジェローム・ルジューヌでした(図3、図7)。

彼は敬虔なキリスト教徒で、生涯妊娠中絶に反対し、このため女性や遺伝学者らから強い反発をうけました。胎児の染色体を検査し、異常な場合には中絶を行う-という道を拓いたことを後悔していたのかもしれません。彼の人となりは映画になっており、DVDはジェローム・ルジューヌ財団から入手できます(12)。ジェローム・ルジューヌ財団はダウン症の親子をケアするための活動を行っています。

日本では敬虔なキリスト教徒が少ないせいでしょうか、ルジューヌが恐れていたことがまさしく現出しています。ある調査では胎児のダウン症が確定した346人の妊婦のうち97%が人工妊娠中絶手術で堕胎したということです(13)

ターナー症候群は通常女性が2本持つX染色体を1本しかもたない(もちろんY染色体はない)患者で(図7)、低身長で第二次性徴を欠くなどの症状を発症します(14)。ウィリアムズ症候群は第7染色体セットの1本のエラスチン遺伝子周辺の複数の遺伝子が欠失する病気で(図7)、知能低下などの精神遅滞・心臓疾患などを発症するとされています(15)。

A_7


遺伝子は各染色体に同じ密度で存在するのではなく、疎な染色体と密な染色体があります(16)。図8で塩基対(緑 Base pairs)の数に対して遺伝子の数(ピンク)が多い場合密ということになります。13番・18番・Y染色体が特に遺伝子がまばらにしか存在しない染色体であることがわかります。13番・18番の染色体は、図5ではAlu 配列が特に少ない染色体であることがわかります。関連性があるようにみえますが、これは偶然なのでしょうか?

A_8

さまざまな遺伝子の中でもリボソームRNAの遺伝子は特別です。なにしろリボソームRNAは、細胞内全RNAの60%の重量を占めるほど大量に存在し(17)、遺伝子も400コピーが存在するほどゲノムの中でメジャーな存在なのです(18、文献19では350コピーになっています)。

リボソーム遺伝子は図9のような構造をとっています。すなわち18S、5.8S、28Sがスペーサーをはさんで連結しており、ひとつのオペロンを構成しています。このスペーサーはITSと呼ばれており、イントロンのように転写されます。オペロンとオペロンの間にはNTSという転写されないスペーサーが存在します。ヒト染色体においては13番・14番・15番・21番・22番染色体の短腕の大部分がリボソーム遺伝子領域とされています(20)。

リボソームにはもう1種5Sタイプがありますが、これは1番目の染色体に遺伝子のクラスターが存在します(21)。図9のリボソーム遺伝子群はRNAポリメラーゼ I によって転写されますが、5SRNA遺伝子はRNAポリメラーゼ III という特殊なRNAポリメラーゼによって転写されることが知られています。

A_9

トランスファーRNA遺伝子も、リボソームRNA遺伝子に次いでゲノムの大きな領域を占めていると思われます。これ以外の非コーディング領域には図10で示すようなものがあります。

細菌はゲノムのサイズが小さく、サーキュラー(円形)なので複製開始点がひとつでいいのですが、真核生物は一般にゲノムのサイズが大きく、複数の直鎖状DNAからなるので、1本のDNAについて複数の開始点があることは必須で、図10の1のような形になります。細菌でも真核生物でも、複製開始点には多くのタンパク質が結合して鎖をほどかなくてはなりません。このための塩基配列をDNAが用意しなければなりません。

遺伝子の特に上流にはプロモーターやエンハンサーが必須で、ここにも特定の塩基配列が必要です。この他染色体組み換えに必要な構造、セントロメア、テロメア、核の構造タンパク質にDNAを結合させる部位などに特定の塩基配列が必要です。

A_10

参照

1)https://en.wikipedia.org/wiki/Genome

2)https://ja.wikipedia.org/wiki/%E3%82%B2%E3%83%8E%E3%83%A0

3)http://researchmap.jp/jo6z5r93q-17709/#_17709

4)https://www.ncbi.nlm.nih.gov/books/NBK21134/

5)西川伸一 JT生命誌研究館 ゲノムの解剖学 (2015)
https://www.brh.co.jp/communication/shinka/2015/post_000011.html

6)小林武彦編 「ゲノムを司るインターメア 非コードDNAの新たな展開」 化学同人 p. 209  (2015)

7)東京工業大学大学院 生命理工学研究科 進化・統御学講座(岡田研究室)HP:
http://www.fais.or.jp/okada/okada-past/research/keywords/m01_alu.html

8)https://en.wikipedia.org/wiki/Human_genome

9)Joe Hin Tjio and Albert Levan., The chromosome number of man. , Hereditas vol. 42:  pages 1–6, (1956)
http://onlinelibrary.wiley.com/doi/10.1111/j.1601-5223.1956.tb03010.x/pdf

10)http://ipsgene.com/genome/dna/band-method

11)https://en.wikipedia.org/wiki/Karyotype

12)ジェローム・ルジューヌ財団 https://lejeunefoundation.org/
または https://www.ds21.info/?p=8644

13)https://mamanoko.jp/articles/26383

14)https://en.wikipedia.org/wiki/Turner_syndrome

15)https://en.wikipedia.org/wiki/Williams_syndrome

16)https://en.wikipedia.org/wiki/Chromosome

17)小林武彦、赤松由布子 リボソームRNA 遺伝子の不安定性と生理作用-出芽酵母を中心にして 生化学 第85巻 第10号,pp. 839-844,(2013)
http://www.jbsoc.or.jp/seika/wp-content/uploads/2014/06/85-10-03.pdf

18)奥脇暢 リボソームRNA 遺伝子と核小体構造の調節  生化学 第85巻 第10号,pp. 845-851,(2013)
http://www.jbsoc.or.jp/seika/wp-content/uploads/2014/06/85-10-04.pdf

19)小林武彦編 「ゲノムを司るインターメア 非コードDNAの新たな展開」 化学同人 p. 111 (2015)

20)小林武彦編 「ゲノムを司るインターメア 非コードDNAの新たな展開」 化学同人 p. 2 (2015)

21)Timofeeva Mla et al.,  Organization of a 5S ribosomal RNA gene cluster in the human genome., Mol Biol (Mosk). vol. 27(4):  pp. 861-868. (1993)
https://www.ncbi.nlm.nih.gov/pubmed/8395649

| | コメント (0) | トラックバック (0)

2017年10月 6日 (金)

「二重らせん」 by James D. Watson

Photo基礎科学研究の危機が叫ばれるなか(参照:最後の点線下のパラグラフ)、予算配分の問題もさることながら、大学や研究所の雰囲気も大事です。

ジェームス・D・ワトソンが書いた「二重らせん」(上の図、講談社文庫)を読むと、当時の英国の大学や研究所の雰囲気がビビッドに描かれていて、その自由でフレンドリーな雰囲気こそが、革命的な科学の進歩を生み出したとわかります。

研究者の方々も、研究室の雰囲気をどのように作り上げていけば良いかを考える上で、大いに参考になると思います。アングロサクソン民族や戦後のフランス人が作り上げた自由闊達な雰囲気の中でこそ、ユダヤ人達も実力を発揮できたのだと思います。ワトソンとクリックは例外的にユダヤ人ではありませんでしたが。

ここに書いてあるのは主にキングスカレッジとキャベンディッシュ研究所という英国の状況ですが、米国ではもっと自由な雰囲気だったのでしょう。日本でも昔は大学や研究所は自由な雰囲気がありました。夕方に出勤して夜明けに帰る人、学生との議論はかならず喫茶店で行う教授、学会でも会場には決して行かず、談話室でずっと話している人、スカートを翻して夜中に塀を乗り越えて帰る女性研究者、2日遅れで配達される新聞を読みながらこたつで構想を練る人里離れた研究所の面々、など様々でした。そんななかから多くの優れた研究者が出現しました。ワトソンも朝だけ仕事をして、昼からはテニスという日々もあったようです。

Photo_2
「二重らせん」によれば近隣のレストランで議論を戦わせる場面も多くて、そういう雰囲気もいいなと思いました。パーティーなども頻繁に開かれていたようです。知り合いを増やす機会が多いというのは重要です。

他の研究者との風通しも良く、ワトソンがヌクレオチドの配位に正しい答えを得たのも、結晶学者であるジェリー・ドナヒューが、教科書に書いてあるチミンとグアニンの構造式(エノール型)が実は誤りで、両者ともケト型だと教えてくれたおかげで、それがなければワトソンとクリックは悪戦苦闘して誤った結論に達していたかもしれません(下の図)。

若手研究者に研究に打ち込める環境と雰囲気を作ってあげることは重要です。

------------

国立大学に所属する研究者には、毎年少額とは言え研究費が支給されてきました。そのお金で研究室の電気代や水道料を支払ったり、実験動物を維持したり、標本や資料の保存、調査費・旅費などに充当してきました。しかし、その状況が大きく変わろうとしています。

「古屋准教授(徳島大学)談:2018年度からは『重点クラスター』と呼ばれる学内の特定の研究グループにだけ配分することになった。残りの人はゼロです。重点クラスターの選択基準は端的に言って、医療技術や医薬品開発など直接役に立つかどうかです。恐れていた最悪の事態がついに来ました。」

これによって、これまで積み上げてきた貴重な実験動物の系統や標本・資料の維持ができなくなり、研究室は半廃墟と化します。人件費もなくなるため期限付き研究員や秘書を解雇しなければなりません。すべて自公政権=晋三の責任でしょう。

https://news.yahoo.co.jp/feature/766






| | コメント (0) | トラックバック (0)

2017年9月30日 (土)

やぶにらみ生物論88: トランスポゾン2

今回はトランスポゾンの種類や構造について述べます。細菌から私達人類まで、あらゆる生物はウィルスの脅威にさらされています。しかしウィルスは細胞に感染するとすぐに増殖して細胞を破壊するようなタイプのものばかりではなく、なかにはホストのDNAに組み込まれてプロファージの状態となり、あたかもホストのDNAの一部であるように振る舞うタイプもあります(1)。

すなわち太古の昔から、素性の知れない外界DNAをホストのDNAの中に埋め込む生化学的システムは存在したと考えられます。そのために必要な最小限のメカニズムには、ホストのDNAと親和性を持った塩基配列、ホストのDNAに切れ目を入れるエンドヌクレアーゼ活性、ホストのDNAと接続するためのDNAリガーゼ活性などが含まれているはずです。

ホストのDNAに埋め込まれたウィルスのDNAの一部に突然変異が生じて、例えば殻のタンパク質をコードする遺伝子が使えなくなってしまったらどうなるでしょう。もはやウィルスはホストの外では活動できません。ただDNAを切り出したり、埋め込んだりする活性が残っていればホストのDNAの中で移動することは可能かもしれません。

真核生物の場合は、このようなDNAを遺伝物質として持つウィルス以外に、RNAを遺伝物質として持つレトロウィルスが感染する場合があります。この場合レトロは「昔の」という意味ではなく、「逆の」という意味です。普通の生物がやっているDNAからRNAへの転写ではなく、レトロウィルスはRNAを鋳型として、逆転写酵素によりDNAを合成する(=逆転写)ことができます。

レトロウィルスとは、ヒトに感染するものではインフルエンザウィルス、HIV、はしかウィルス、ムンプス(おたふくかぜ)ウィルス、B型以外の肝炎ウィルスなどがそうです。この場合も逆転写されたDNAがホストのDNAに組み込まれてプロウィルスの状態になることがあります。

プロファージと同様、プロウィルスも細胞に感染するための遺伝子が変異して役立たなくなることはあり得ます。このように感染力を失ったファージやウィルスは、本来持っていた1)細胞に外から感染するシステム、2)遺伝子を殻内部にパッケージングするためのシステム、3)遺伝子を包む殻、4)細胞を破壊するためのシステムなどはあっても無用または有害になるので、遺伝子には全く残そうという選択圧力がかからなくなり、荒れ放題(変異放題)となります。

ただしホストの細胞内でずっと遺伝子を残す手立てはあります。たとえば細菌や一部の真核生物の場合はプラスミドとなって、ずっと細菌体内で存続することができます。細菌のDNAに組み込まれた状態でも、そのまま存続できる場合があります。他のすべての遺伝子を失っても、DNAを切り出す活性とDNAに組み込む活性が保存されていれば、ホストのDNAを移動することができますし、切り出されている間にDNAを複製して増殖することすら可能です。哺乳類の場合、プラスミドとして生き残るものは多分ないと思いますが、ホストDNAの一部としては残留することができます。

細菌のトランスポゾンはすべてDNAトランスポゾンですが、真核生物のトランスポゾンにはDNAトランスポゾンとレトロトランスポゾンが存在します。まずDNAトランスポゾンからみていきましょう(2、図1)。

DNAトランスポゾンには両端にダイレクトリピート(DR)という同方向を向いた反復配列がある場合があります。これはターゲットのDNAにトランスポゾンを挿入する際に使われると考えられます。ダイレクトリピートの内側にITR(inverted terminal repeat)、またはTIR(terminal inverted repeat)という逆向きの反復配列があります(図1)。これは図3であらためて説明しますが、トランスポゾンのDNAを切り出すときに認識する配列です。

これらの反復配列以外に、DNAトランスポゾンはDNAトランズポゼースの遺伝子をもっており、この他にこの遺伝子を転写するために必要な配列があれば、最小限の構成を確保できます(図1)。なお図1の塩基配列は1例であり、実際の配列とは関係ありません。実例についてもっと詳しく知りたい方は文献(3、4)などが参考になると思います。

B_2


細菌のトランスポゾンはDNAトランズポゾンですし、植物の中には稲のようにゲノムの大部分がDNAトランスポゾンで構成されているものも多いと思われるので、おそらく世界で一番多い遺伝子は「DNAトランスポゼースの遺伝子」でしょう。DNAトランスポゾンには図2のように2つのタイプがあり、ひとつは二重鎖ごとカットして他の部位にペーストする移動型、いまひとつは一重鎖のみ切り出して、複製して二重鎖としてから他の部位に挿入する複製型です。複製型の場合、切り出された一重鎖の部分は残された鎖を鋳型としてホストの酵素で複製されるので、結果的にコピー&ペーストとなり、トランスポゾンが2倍に増幅されます(図2)。

Photo_9
Inverted terminal repeat ( ITR 、図1) がDNAトランスポゾンの両端にあることは、DNAトランスポゼースの作用機構と密接な関連があります。図3のようにDNAトランスポゼースはダイマーとしてそれぞれがITRを認識して働く、すなわちDNAを切断するので、ITRがトランズポゾンの両端にあることは都合が良いのです。このことはトランスポゾンのエリアを2つのITRにはさまれた部分という認識を酵素が行う上でも重要です(5)。右図はプロテイン・データバンク・ジャパンのイラストです。DNAトランスポゼースとDNAの関係を3Dで表現したものです。

Photo_10


DNAトランスポゾンをDNAに挿入するときに、ギャップができることがわかっており、ここがダイレクトリピート(DR)あるいはターゲット・サイト・デュプリケーション(TSD)と呼ばれるサイトと考えられています(5)。この部分は当然修復されDNAの接続(ライゲーション)が行われなければなりません。

図4にみられるように、トランスポゾンが挿入されたあと、ホストの細胞が持っている酵素によってギャップは修復されます(6)。修復された部分はトランスポゾンの両端に存在し、同じ方向を向いた同じ配列となります(ダイレクトリピート)。次にこの位置のトランスポゾンを切り出すときに、ダイレクトリピートを置いていくと、DNA上に昔トランスポゾンがあったという痕跡が残りますし、持ち出すとダイレクトリピート付きのトランスポゾンができます。

Photo_11


ここまでDNAトランスポゾンについて述べてきましたが、トランスポゾンにはもうひとつレトロトランスポゾンというジャンルのものがあります。これはDNAの一部が別の位置に移転するという結果は同じなのですが、メカニズムはまったく異なります。細菌にはこのタイプのトランスポゾンはみられず、真核生物だけに存在するものです。レトロトランスポゾンの場合、普通の遺伝子のようにいったんRNAに転写され、そのRNAを鋳型として逆転写によってDNAが合成され、さらにその単鎖DNAを鋳型として二重鎖DNAが合成され、ホストのDNAに埋め込まれます(7、図5)。

Photo_12
大変複雑なように見えますが、実はありふれたウィルスであるインフルエンザウィルス、HIV、B型以外の肝炎ウィルス、おたふく風邪ウィルス、はしかウィルスなどはみんな遺伝子はRNAの形でホストに感染し、ホストの細胞の中で逆転写によって相補的なDNAを合成してホストDNAにプロウィルスという形で埋め込まれた状態で潜伏し、転写によって遺伝子RNAと必要なタンパク質を合成してウィルス粒子を作り、ホストを破壊して外に出るという生活史を繰り返します。

細菌のプロファージの場合と同様、ホストのDNAに必要な遺伝子のセットを埋め込んだまではいいものの、その一部が壊れてしまったらどうなるでしょう。ウィルス粒子を作って他の細胞に感染することができなくなるので、プロウィルスのままホストのDNAにとどまるしかありません。いったんとどまってしまったら、プロウィルスとして存在するための遺伝子を除いて、他の遺伝子は壊れ放題になってしまいます。そうなるとプロウィルスは原型をとどめないトランスポゾンとなってしまいます。これをレトロトランスポゾンといいます。

レトロトランスポゾンの中で、一番ウィルスの原型をとどめているのはLTR型レトロトランスポゾンで、図6に示すように、両端にLTR(long terminal repeat)という構造を持っています。ロングと言っても数百から数千塩基対というバラエティーがあって、その機能は十分には解明されていませんが、レトロウィルスはこの部位を利用してホストDNAに逆転写したDNAを組み込んでいることは間違いなさそうです(8)。

そのレトロウィルスの機能を使ってトランスポゾンをホスト内部で移動させようというのが、LTR型レトロトランスポゾンです。このトランスポゾンは内部にエンドヌクレアーゼ(DNAを切断する酵素)と逆転写酵素(リバーストランスクリプターゼ)の有効な遺伝子を保存していますが、他の構造タンパク質などの遺伝子(gag、env など)は変異して無効になっています(図6)。

Photo_13


そのウィルスの遺産であるLTRを失った長鎖トランスポゾンをLine(long interspersed nuclear elements)といいます。LTRのかわりにやや長いTSDがあり、さらに長い非翻訳領域が3’と5’の両端にTSDに続いて存在し、何らかの形でLTRのかわりにトランスポゾンのDNA組み込みのメカニズムにかかわっていると思われます。LineはLTR型と同様内部にエンドヌクレアーゼとリバーストランスクリプターゼの遺伝子を持っており、それゆえに短くはなれません。だいたい4,000~10,000塩基対(bp)となっています。

これに対してSine(short interspersed nuclear elements)はLTRのみならず、内部のエンドヌクレアーゼとリバーストランスクリプターゼの遺伝子も失っており、そもそもレトロウィルスを起源とするものかどうかも定かではありません。内部にtRNA、5SrRNA、7SL-RNAなどの機能RNAの一部に類似した塩基配列を持っており、3’末にはLine相同な配列とポリAテイルがあります。おそらくレトロウィルスとは関係なく二次的に発生したものなのでしょう。転移するための酵素がないので、Lineなどが持っている酵素の支援がなければ転移することができません。構造に大きなバラエティーがあるのも特徴です(9)。

Photo_14


霊長類は霊長類にしかないAluエレメントというSineの1種を持っています。Aluエレメントという名は、Aluという制限酵素で切断される部位があることから名付けられました(図8)。ヒトの場合、全ゲノムの11%がAluエレメントだとされています(10)。なぜこんなに大量の特殊なトランスポゾンがヒトのゲノムにあるのかは謎です。このトランスポゾンは7SL-RNAという、タンパク質を細胞外に分泌するためのメカニズムの一翼をになうRNAの遺伝子と共通な配列の断片を数多く持っています(図8)。

図8に両者のフルシーケンスを示しましたので、目をこらして比較してみて下さい。Aluエレメントを発見したのは、カール・シュミット(Carl W. Schmid )とプレスコット・ダイニンジャー(Prescott Deininger) (11、図8)ですが、こんな特殊なトランスポゾンがヒトのゲノムに大量にあるとわかって、さぞかしびっくりしたことでしょう。

Photo_15


さまざまな生物のなかには、DNAトランスポゾンを多く持つグループとレトロトランスポゾンを多く持つグループがあります(12、図9)。この中で注目したいのは、Entamoeba histolytica という哺乳類に感染する赤痢アメーバはレトロトランスポゾンを圧倒的に多く持っている一方で、Entamoeba invadense という爬虫類に感染する赤痢アメーバはDNAトランスポゾンが圧倒的に多いという研究結果です。

つまりトランスポゾンが蔓延するために要する期間は、進化のスケールで考えるとかなり短いのではないかということが示唆されています。

実際ショウジョウバエのPエレメントというDNAトランスポゾンは、ほとんどの自然界のハエが持っているにもかかわらず、古くから飼い継がれている実験用のハエにはどれにも全くみられないということが知られており、この場合数十年の内にPエレメントが自然界で蔓延したと思われます(13)。

Photo_16


参照

1)https://ja.wikipedia.org/wiki/%E3%83%97%E3%83%AD%E3%83%95%E3%82%A1%E3%83%BC%E3%82%B8

2)Transposons: Mobile DNA
http://grupo.us.es/gfnl/dna/genetic_ingeniering/transposons.htm

3)  Kosuke Yusa, piggyBac Transposon., Microbiolspec, vol. 3 no. 2  (2015) doi:10.1128/microbiolspec.MDNA3-0028-2014
http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0028-2014

4)Narayanavari SA, Chilkunda SS, Ivics Z, Izsvák Z., Sleeping Beauty transposition: from biology to applications., Crit Rev Biochem Mol Biol.  vol.52, no.1, pp. 18-44. (2017) doi: 10.1080/10409238.2016.1237935. Epub 2016 Oct 4.
https://www.ncbi.nlm.nih.gov/pubmed/27696897

5)JD Watson, Molecular Biology of the Gene., 6th edn., pp.334-370, Cold Spring Harbor Laboratory Press (2008)

6)Jennifer McDowall, Transposase.
http://www.ebi.ac.uk/interpro/potm/2006_12/Page1.htm

7)https://en.wikipedia.org/wiki/Retrotransposon

8)http://what-when-how.com/molecular-biology/long-terminal-repeats-molecular-biology/

9)http://sines.eimb.ru/Help.html

10)Prescott Deininger, Alu elements: know the SINEs.,  Genome Biol. 2011; vo. 12(12): pp. 236-248. Published online 2011 Dec 28.  doi:  10.1186/gb-2011-12-12-236

11)Schmid CW, Deininger PL  "Sequence organization of the human genome". Cell. 6: 345–358. (1975)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334610/

12)Leslie A. Pray, Transposons: The Jumping Genes, Nature Education vol.1(1), p. 204 (2008)
https://www.nature.com/scitable/nated/article?action=showContentInPopup&contentPK=518

13)https://ja.wikipedia.org/wiki/%E3%83%88%E3%83%A9%E3%83%B3%E3%82%B9%E3%83%9D%E3%82%BE%E3%83%B3 (具体例のセクションを参照)

 

 

| | コメント (0) | トラックバック (0)

2017年9月21日 (木)

やぶにらみ生物論87: トランスポゾン1

トランスポゾンとは染色体上での位置を変えることができるDNA断片のことですが、発見したのはバーバラ・マクリントックという女性科学者です(図1)。

彼女が辿った道をまず見ていきましょう。彼女は1902年の生まれで日本では明治の末期ですが、当時は米国でも女性が科学者になるのはまれなことでした。実際コーネル大学の農学部に進学したのですが、希望した植物育種学科は女人禁制で、大学院も遺伝学は女性は専攻できなかったので、やむなく植物学を専攻することになりました。

マクリントックが最初に目指したのは、当時モーガン研のスターティヴァントがショウジョウバエの4つの染色体を識別し、それぞれにおける遺伝子の場所を記した染色体地図を発表していたので、彼女が研究材料としていたトウモロコシでも染色体地図を作成するということでした。彼女はまず染色体を識別する上で助けになる酢酸カーミン染色法を開発しました。これは図1のカルミン酸を酢酸に溶かして鉄イオンなどを加えた染色液を用いる方法で、現在でも使われています。カルミン酸はある種のカイガラムシが合成する色素で、1991年まで人工合成はできませんでした。

A_8


彼女はまず自らの染色法を駆使して、トウモロコシの染色体が10組20本であることを確定し、各染色体に1~10番の番号を付けました(1)。この論文を発表した年(1929)に、ハリエット・クレイトン(図2)という大学院生がやってきて、マクリントックの指導で研究をはじめました。彼女たちが興味を寄せたのは奇妙な形の染色体を持つトウモロコシの変異体でした。当時としては、組み換えという現象があることはわかっていましたが、これが線路のポイント切り替えのようなダイナミックな染色体の物理的切断と結合の結果なのか、それとも遺伝子ごとの交換のようなミクロな現象なのかよくわかっていませんでした。

クレイトンとマクリントックは、染色体の両端にそれぞれ特徴的な構造、すなわちノブとしっぽ(非染色体DNA)を持つ変異体をみつけて、ノブとしっぽが組み換えによっていれかわることを示しました。これによって組み換えが可視化され、誰もが染色体の切断と再結合(交叉)によって組み換えが行われることを納得しました(2)。図2をみると、CとWという2つの遺伝子の間で組み換えがおこると、Cはノブ、Wはしっぽと行動を共にしており、物理的な染色体の切断・結合と、形質から判断される遺伝子の組み換えが同時に起こっていることがわかります。

A_9


私はこの文章を書くに当たって、マクリントックが後にトランスポゾンの理論をうちたてるきっかけとなった論文のことを調べるために文献(参照3)にあたりました。その中には 「1931年の秋、彼女はカリフォルニア大学バークレイ校の研究者から送られてきた別刷りを受け取った。そこに彼女がミズーリで見たものと同じ種類の斑入りが載っていた。バークレイの研究者たちもまた、染色体の切断あるいは欠落で生じた小さな染色体について触れていた」 という記述があります。ところがこのバークレイの研究者が誰なのかは書かれていません。

不満を感じながら調べたところ、マクリントックの論文(4)に引用文献がありました。この論文には引用文献が2つしかなく、そのひとつでした。Nawashin M. という人物の論文なのですが、さらに調べると、どうもこの引用文献のスペルが間違っているらしくて、Navashin M. という人物なら当時バークレイ校で植物の遺伝学をやっていたようなのですが、Nawashin M. という人物は見当たりませんでした。伝記を書いて出版するのなら、ちゃんとカリフォルニア大学バークレイ校に行くなり、文献を取り寄せるなりして調べて確認してから書いてほしいと思いますね。これからは全く私の想像ですが、Navasin さんはドイツ語でも論文を書いているのでドイツ人で、本来は Nawashin だったわけですが、米国では名前の発音が違って呼ばれるのが嫌で Navashin にスペルを代えたのではないでしょうか?マクリントックへの手紙には Nawashin と書いたのかもしれません。

マクリントックは斑入りの原因が、環状染色体(5、図3)内における染色分体間での姉妹鎖交換によって、セントロメアを2個含む染色体と全く含まない染色体が形成され、セントロメアを含まない染色体は細胞分裂によって娘細胞に分配されないため、色に関する遺伝子が無効になった細胞集団ができることによって斑入りが発生することを示しました(4)。

A_10


マクリントックは米国学術研究会議から奨学金をもらって、コーネル大学、ミシガン大学、カルテックなどを渡り歩いて研究をしていましたが、それが切れてしまって、ドイツで研究を続けることにしました(6)。1933年~1934年はドイツで核小体と染色体の関係について研究していましたが、ナチスドイツの台頭もあって、コーネル大学に戻ることになりました。

そして1936年に、30才代半ばでようやくミズーリ大学での定職(assistant professor)を得ることができました。Assistant professor といえば日本では助教のようなポストでしたが、その状態で彼女は米国遺伝学会の会長になりました。マクリントックは全く協調性がなく、喧嘩っ早い人間だったので、業績は大いに評価されてもポストは与えられず、女性の地位が低かった時代とは言え、あとからきた女性に先に准教授(associate professor)のポストが与えられるという有様でした(3)。

マクリントックが幸運だったのは、このような状況の中で旧友のマーカス・ローズがコールド・スプリング・ハーバー研究所に誘ってくれたことでした。ここは生物学のジャンルでは最も有名なシンポジウムが開催される場所として業界で知らない人はいません。夏期休暇を利用して多くの研究者が集まる施設ですが、冬は静かな環境で思う存分研究ができる場所でした(図4)。

この研究所のたたずまいはちょっと変わっていて、図4のように普通のビルディングではなく、敷地に散在する個人の住宅のような建物がひとつの研究室になっています。右はマクリントックの研究室で、彼女が亡くなったあともそのまま保存されていました。

このような施設をみると、日本人は科学を利用しようとするだけで、愛してはいないということを痛感させられます。ちなみに2009年にはコールド・スプリング・ハーバー・アジアが中国の蘇州に開設され、活動を開始しました。これからの科学は中国によって牽引されることが予感させられます。

A_11


これからの話を理解するためにアントシアニジンという色素について説明しなければなりません。この色素は多くの植物で花や実の色に関与しており、複雑な過程を経て合成され、しかも図5のように側鎖の種類によって様々な発色が可能です。実際にはこの色素に糖が結合した配糖体の形で花や実に存在しています。

A_12

マクリントックは1941年12月から、ほとんどの残りの人生をコールド・スプリング・ハーバーで過ごしました。1941年12月といえば、8日の真珠湾攻撃から太平洋戦争が勃発した時期でした。彼女が「動く遺伝子」の研究を始めたのは1944年ですから、日本軍が太平洋の島々で玉砕を重ねていた時期です。「動く遺伝子」に関する仕事は非常に困難だったので、数年間は論文が書けませんでしたが、戦争中にもかかわらずカーネギー財団はずっと援助を続けました。

この間にマクリントックは、Ac と Ds というDNA上の因子が、DNA上で他の部位にジャンプして遺伝子発現の調節を行っていることをつきとめました。例えば図6で言えば、通常は紫色の実が、Dsがアントシアニジン合成遺伝子の位置に移動してくると、その合成遺伝子の発現が抑制されて実の色が白くなり、Dsがそこから抜けて移動すると、ふたたび色素が合成されるようになります。どの程度元に戻れるかによって発色の状況が違っていきます。これが斑入りの原因になります。

A_13

マクリントックは1951年にコールド・スプリング・ハーバー研究所のシンポジウムで「動く遺伝子」に関する永年の研究成果を発表しました。しかし予想に反して全く反響はなく、誰も彼女が何を言っているのか理解できませんでした。ジャコブとモノーのオペロン仮説よりも前、ワトソンとクリックの二重らせんよりも前だったので、当時としては想像もできないようなお話だったようです。DNAの一部が遺伝子の活動を制御するなどと言う概念すらなかった時代だったということもありますが、当時は遺伝学者の興味がファージや大腸菌に大きく傾いていた時代だったので、トウモロコシの話題などみんなあまり興味がなかったのでしょう。

その後も分子生物学的な裏付けがなかったので、「動く遺伝子(トランスポゾン)」はなかなか業界で認められませんでしたが、1982年にスプラドリングとルビン(図7)がショウジョウバエにPエレメントが存在することを証明し(8、9)、ついに1983年にフェドロフ(図7)がトウモロコシのAcとDsの分子的実体とその動きを解明した(10)ことで、間髪を入れずマクリントックはノーベル生理学医学賞を授けられることになりました。

授賞時マクリントックは80才を越えていましたが、メンデルと違って生きているうちにきちんと再評価されたのはよかったと思います。ただ私の意見としては、ニーナ・フェドロフと共に授賞すべきだったのではないか、そのほうがマクリントックも嬉しかったのではないかと思いますね。天才だけでなく、実験的証明を行った人々についても、きちんと評価されて然るべきです。

A_14

現在ではトランスポゾンは細菌からヒトに至るまでユニバーサルに存在することが知られていますし、種類も様々です。少し長くなりそうなので、続きは次回に述べることにします。


参照

1) B. McClintock.,  Chromosome Morphology in Zea mays. Science 69: 629 (1929)
http://science.sciencemag.org/content/69/1798/629.long

2)Creighton, H., and McClintock, B. 1931 A correlation of cytological and genetical crossing-over in Zea mays. PNAS vol. 17: pp. 492–497 (1931)
http://www.esp.org/foundations/genetics/classical/holdings/m/hc-bm-31.pdf

3)Ray Spangenberg  and  Diane Kit Moser  著,  大坪 久子 (翻訳)  「ノーベル賞学者バーバラ・マクリントックの生涯 動く遺伝子の発見」  養賢堂 2016年刊

4)B. McClintock., A correlation of ring-shaped chromosomes with variegation in zea mays., Natl. Acad. Sci. USA, vol.18, no.12, pp. 677-681 (1932)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076312/pdf/pnas01740-0003.pdf

5)Lillian V. Morgan., Correlation between shape and behavior of archromosome., Proc. Natl. Acad. Sci. USA, vol. 12., pp.180-181 (1926)
http://www.pnas.org/content/12/3/180

6)Famous scientists. Barbara McClintock.,
https://www.famousscientists.org/barbara-mcclintock/

7)Barbara McClintock, The origin and behavior of mutable loci in maize., Proc. Natl. Acad. Sci. USA vol. 36,  pp. 344-355 (1950)

8)Spradling AC, Rubin GM,  "Transposition of cloned P elements into Drosophila germ line chromosomes". Science. vol. 218 (4570): pp. 341–347. (1982)
Bibcode:1982Sci...218..341S. PMID 6289435. doi:10.1126/science.6289435.

9)Rubin GM, Spradling AC, "Genetic transformation of Drosophila with transposable element vectors". Science. vol. 218 (4570): pp. 348–353. (1982)
Bibcode:1982Sci...218..348R. PMID 6289436. doi:10.1126/science.6289436.

10)N. Fedoroff, S. Wessler, and M. Shure, Isolation of the transposable maize controlling elements Ac and Ds., Cell vol. 35, pp. 235-242 (1983)

 

 

 

 

| | コメント (0) | トラックバック (0)

2017年9月 8日 (金)

やぶにらみ生物論86: PCR

PCRとはポリメラーゼ・チェイン・リアクションの略称で、「科捜研の女」などでもお馴染みですが、痕跡的なDNAを大量に増やす方法です。本題に入る前に、少し歴史的経緯をみてみましょう。

ところで一般には大腸菌くらい簡単に培養できるのだろうと思われがちですが、昭和時代にはそういうわけにはいきませんでした。私が学生時代、同じ建物に微生物学教室がありましたが、そこには宇宙船のハッチのようなものがあって、中に入ると数人が作業できるような部屋があり、各種実験器具、培地、シャーレ、Lブロス、ピペットなどが大量に積み重ねられていました。これは高温高圧で滅菌作業をするボイラー室でした。

空気中には雑菌が浮遊しているので、これらを芽胞を含めて完全に死滅させるには高温高圧(たとえば121℃、20分)で処理しなければいけません。そのためにはボイラー室を用意して、資格を持った技術員を雇用しなければなりません(1)。実験は普通の実験台ではできず、クリーンベンチという、外から雑菌が流入しないよう空気の流れをコントロールした、巨大な無菌ボックスの中に手を突っ込んで行わなければなりません。現在では実験器具はすでに企業で滅菌した使い捨て製品を買って使う場合が多く、このてのプラスチック製品は使った後棄てるだけなので、よほど特殊な実験でなければボイラー室を使うことはなく、廊下の隅にでも置けるようなオートクレーヴ装置で事足ります(2)。

ですから当時の生命科学研究者にとって、大腸菌にプラスミドを入れて遺伝子を増幅させるという作業は、微生物学の研究室以外ではじめるには大きな壁がありました。増幅させたいのはDNAという化学物質なので、なんとか試験管で酵素を使ってやりたいと思うのは当然です。そこに登場したのがマリス(図1、Kary Banks Mullis)でした。

マリスはカリフォルニア大学バークレイ校で学位を取った後、カンザス大学の小児心臓病研究室のポストドクになり(1972年)、1975年までに2度離婚して仕事も辞めバークレーに舞い戻りました。バークレーでは最初の妻が経営するコーヒーショップで店長をやっていたそうです(3)。そんなある日、バークレー校時代の友人であるトーマス・ホワイト(図1)と再会し、ホワイトの紹介でカリフォルニア大学サンフランシスコ校のポストドクになり、脳研究をはじめました。しかしそこも結局すぐにやめてしまい、困ったホワイトは自分が幹部社員であるシ-タス社に、技術員としてもぐりこませることにしました(3、4)。

A_9


マリスは著しく協調性を欠く性格で、会社でまわりと衝突をくりかえすやっかいものでしたが、ホワイトはあえてDNA合成室長に抜擢しました。ここでマリスはDNA合成自動化装置の製品化で貢献して、ようやく会社での自分の立場を確立しました。そうして1983年、有名な出来事が起こります。文献4の記述を引用します。

In 1983, while driving along the Pacific Coast Highway 128 of California in his Honda Civic from San Francisco to his home in La Jolla, California, USA, Kary Mullis was thinking about a simple method of determining a specific nucleotide from along a stretch of DNA. He then, like many great scientists, claimed having a sudden flash of inspirational vision. He had conceived a way to start and stop DNA polymerase action and repeating numerously, a way of exponentially amplifying a DNA sequence in a test tube(4).

ドライブ中に突然あるアイデアが浮かんだというわけです。それはPCR(ポリメラーゼ・チェイン・リアクション)法の根幹となるすばらしいアイデアだったのですが、マリスは相変わらず喧嘩をくりかえし、アイデアが採用されるどころか「早くクビにしろ」という多くの研究員からの要請がホワイトのもとに届く有様でした。

ホワイトはそのアイデアを評価しましたが、実験が下手くそな上に室員との折り合いも最悪なマリスにまかせておいてはどうにもならないと考え、マリスを棚上げして、彼のアイデアを実現するプロジェクトを別の研究室で立ち上げました。そうしてからはランディ・サイキとスティーヴン・シャーフという優秀な研究者達が中心となって、順調に仕事は完成しました。

論文のファースト・オーサーはマリスで、マリスがまとめる予定だったのですが、さっぱり論文を書かないので、結局1985年にサイキ(5)、1986年にシャーフ(6)が論文を書くことになりました。マリスがやっとこさ論文を書いたのはオリジナルペーパーというより実験技術の本で、1987年になってしましました(7)。そこまで待っていたらシータス社は特許をとれなかったでしょう。それでもマリスは1993年にノーベル化学賞を単独で受賞しました。

ここでPCR法の基盤となるDNAの性質を簡単に述べます。DNAの二重鎖は高温(図2では94℃)で解離し一重鎖となります。ゆっくり低温にもどすとアニーリングがおこって、再び二重鎖が形成されますが、急速に温度を下げると長いDNA鎖はアニーリングをおこしにくく、短いプライマーを投入すると優先的にDNA鎖に結合することができます。

A_10


そこで50℃~60℃に急冷した後、プライマーを大過剰に投入してDNAと結合させます(図3)。

A_11


次に72℃に温度を上げて高分子DNAのアニーリングを阻止しながら、DNAポリメラーゼと基質を投入してDNA合成を行わせます(図4)。この温度でDNA合成を行わせるには、後述のTaqポリメラーゼという特殊な耐熱性のDNAポリメラーゼが必要です。

A_12


もともと生物が出現しはじめた頃の地球は高温で、当然その頃の細菌・古細菌は好熱性だったわけです(8)。そして現在でも一部の真正細菌や多くの古細菌は温泉などの高温環境で生活しています。しかしはるか昔の地質時代とはことなり、現在は芽胞という熱に強い特殊な仮死状態で生きている生物も多く、そのような生物では酵素がすべて耐熱性とは限りません。

トーマス・ブロックとハドソン・フリーズ(図5)はそんななかから、Thermus aquaticus という至適増殖温度が70℃~72℃の真正細菌を分離しました(9)。これは当時としては驚異的な高温で生育する生物でした。しかもこの温度はPCR法を実行する上で都合の良い温度でした。

アリス・チエン(図5、現アリス・チエン・チャン)は Thermus aquaticus からDNAポリメラーゼを抽出・精製し、これは後に学名の頭文字から Taqポリメラーゼと名付けられました(10)。ブロック、フリーズ、チエンらはこんな面白いめずらしいものがあるよというような感覚で研究していたと思いますが、これが20世紀でも指折りのイノベーションになるとは、全く予想していなかったでしょう。科学の進展は思わぬところからやってくるというのは、このブログでも繰り返し述べているところです。

A_13

通常のDNAポリメラーゼを使ってPCR法をやろうとすると、37℃でDNA合成を行わなければならず、この間にもとの巨大分子であるDNAのアニーリングで効率が下がり、さらにまずいことに94℃に温度をあげるとDNAポリメラーゼは失活します。そうすると1サイクルごとに酵素を新たに添加することが必要で、かつだんだん効率が悪くなるわけです。こんなところが誰もPCRなどということを考えなかった理由なのでしょう。

しかしTaqポリメラーゼを使うと状況は一変します。72℃で絶好調、94℃でも失活しないので酵素の添加は不要ですし、72℃の反応では長鎖DNAのアニーリングはおこらないので、効率も落ちません。つまり温度をたとえば 96℃→56℃→72℃→96℃→56℃→72℃→ というように繰り返し変化させるだけで、魔法のようにDNAが増幅されていきます(11)。このようなことを考えると、マリスが単独でノーベル賞を受賞したことには疑問が感じられます。

図6をみていただくと2サイクル目で、目的のDNAが1本鎖だけですが(緑)生成されていることがわかります。図7の3サイクル目では8本生成される二重鎖DNAのうち、2本が目的DNAの二重鎖です(緑x2)。いったん二重鎖目的DNAが生成されると次のサイクルではその二重鎖DNAが複製されます。こうして4サイクル目には16本生成される二重鎖DNAのうち8本が目的の二重鎖DNAとなり、サイクルが進むにつれて目的DNAの純度は上がって、最終的にはそれ以外のDNAは無視できるくらいの%になります。

図6、図7をじっくりとよく眺めてください。最初は様々なDNAが合成されますが、同じことを繰り返しているうちに目的のDNAが自動的にメインになっていく。そう、まるで魔法のようなギミックに茫然とします。

A_14


A_15


先輩からはこのPCRの作業をやるために、何時間トイレを我慢したというような話を聞かされました。3つのウォーターバスを用意して、それぞれ96℃、56℃、72℃に設定し、やることと言えば、時間が来ると試験管をあっちからこっちのバス移動させるだけの作業を延々と繰り返すだけなのです。お疲れ様。

しかし当然2~3年もすれば自動的に移動させる装置が発売され(図8A)、さらに同じ試験管の液体を極めて短い時間で温度変化させる新機軸の開発もあって、やがて水槽は不要となり、極めて小型の装置で作業を行えるようになりました(図8B)。現在では生成したDNAをモニターできるような光学系を装備したリアルタイムPCR装置が主流となっています(図8C)。

A_16

PCRが普及することによって、バイオテクノロジーの研究室や工場のみならず、科学捜査や感染微生物の同定など社会の様々な場面で、この技術が利用されるようになりました。本物のジュラシック・パークも開園できるかもしれません。

ひとつ気をつけなければならないのは、もとのサンプルに微量のDNAが混在していた場合、それも増幅されてしまうということです。生成物を電気泳動法などで解析すれば、何種類のDNAが生成されたかわかります。エラーで実験失敗程度なら笑えますが、科学捜査の失敗や、思わぬ病原遺伝子の増幅などということがおこればしゃれになりません。

参照

1)https://www.sat-co.info/boiler-engineer

2)http://www.zetadental.jp/category-1888-b0-%E3%82%AA%E3%83%BC%E3%83%88%E3%82%AF%E3%83%AC%E3%83%BC%E3%83%96.html?_ad=1&gclid=EAIaIQobChMIx5K-37OK1gIVywcqCh11wg9bEAAYASAAEgKsi_D_BwE

3)野島博著 「分子生物学の軌跡」 化学同人 (2007)

4)Ma Hongbao, Development Application of Polymerase Chain Reaction (PCR), The Journal of American Science vol. 1, no. 3, pp.1-47 (2005)

5)Randall K. Saiki, Stephen Scharf, Fred Faloona, Kary B. Mullis, Glenn T. Horn, Henry A. Erlich, Norman Arnheim. "Enzymatic Amplification of β-globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia" Science vol. 230 pp. 1350-1354 (1985).
http://www.sciencemag.org/site/feature/data/genomes/230-4732-1350.pdf

6)SJ Scharf, GT Horn, HA Erlich "Direct Cloning and Sequence Analysis of Enzymatically Amplified Genomic Sequences" Science vol. 233, pp.1076-1078 (1986).

7)Mullis KB and Faloona FA  "Specific Synthesis of DNA in vitro via a Polymerase-Catalyzed Chain Reaction."  Methods in Enzymology vol. 155(F) pp. 335-350 (1987).

8)http://morph.way-nifty.com/lecture/2016/09/post-1be1.html

9)Brock, Thomas D.; Hudson Freeze (August 1969). "Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile". Journal of Bacteriology. American Society for Microbiology. 98 (1): 289–297. PMC 249935 Freely accessible. PMID 5781580.

10)A Chien, D B Edgar, and J M Trela., Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol. 1976 Sep; 127(3): 1550–1557.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC232952/

11)RK Saiki, DH Gelfand, S Stoffel, SJ Scharf, R Higuchi, GT Horn, KB Mullis, HA Erlich.,  Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.,  Science  29 Jan 1988: Vol. 239, Issue 4839, pp. 487-491DOI: 10.1126/science.2448875

| | コメント (0) | トラックバック (0)

2017年9月 2日 (土)

やぶにらみ生物論85: ベクター

ベクターというのはラテン語で運搬者という意味だそうです。分子生物学では主に遺伝子の運搬者という意味で使います。

これまでの話で明らかなように、制限酵素で切断したDNAは断点の周辺に相補的な構造ができるので、別々のソースから得た2本鎖DNAを同じ制限酵素で切った場合に、別々のDNAであっても自在に接続できることがわかりました。ここですぐに思いつくのは遺伝子を細胞に導入したいということです。それによって人工的な「進化」が可能になります。ところがDNAは簡単には細胞に入り込めません。これは当たり前で、DNAがどんどん細胞に入ってくれば代謝のバランスが崩壊して生命を維持することができなくなると思われますし、例え崩壊しなくても種という概念が成立せず、生物のあり方が地球上の生物とは全く異なることになるからです。

ひとつの遺伝子を細胞に導入するということは、未知遺伝子の機能をさぐるのはもちろん、「ある遺伝子を欠損した細胞に、もとのあるべき遺伝子を導入すると失われた機能が回復する」ということがわかれば、その遺伝子の機能を確認できるという目的も果たせますし、生物に新しい機能を付加するとか、細菌に有用なタンパク質を合成させるとか、遺伝子治療を行なうとかの野心的な目標も当然めざしたいわけです。

そこでスタンレー・コーエン、ポール・バーグ、ハーバート・ボイヤーらが目を付けたのがプラスミドというDNAです(図1)。これは生物が本来持っているゲノム以外に、独立に増殖する機能を持って住み着いているDNAで、原核生物には一般的に存在するものですが、酵母にも存在することが知られています。プラスミドは宿を借りているといっても、寄生虫のようなわるさはしませんし、むしろホストにとって有用な役割を果たしています。ですからホストによってメチル化されて保護されており、ファージのように分解されることがありません。この意味では真核生物における共生に近い関係だと思われます。

A_12


例えばコリシンというプラスミドはホストには無害で他の細菌を殺す物質の遺伝子ですし、R因子プラスミドは薬剤抵抗性をホストに付与します。F因子プラスミドは線毛を作り出す遺伝子を持っており、線毛でF因子をもたない細菌をひきよせて接合状態をつくり、複製したF因子や他のプラスミドを送り込むことができます(図1)。

接合は線毛が作られなくてもおこり、R因子なども複数の方法で他の細胞に送り込むことができます。F因子が細菌本来のゲノムに組み込まれると、ゲノム自体が他の細胞に送り込まれることもあるので、これが細菌の有性生殖だとも言えますが、これは性をどのように定義するかによって考え方が変わります(1)。

ベクターに送り込みたい遺伝子を含むDNAを、その遺伝子の両側で制限酵素 EcoRI を使って切断すると、図2のように AATT---TTAA フラグメントができます。同じ酵素でベクターとして用いるプラスミドを切断して---TTAA  AATT---という断端を作成すれば、そこにアニーリングによってフラグメントを挿入することができます。

アニーリングというのは、もともと二重鎖を構成していたDNAが100°Cで変性して一重鎖になったとしても、60°Cくらいの温度を保つことによって、相補的な配列が水素結合をつくってもとの二重鎖にもどるという現象です。相補的付着末端一本鎖を持つ二本鎖DNA同士も、条件を最適化すれば同じメカニズムで付着末端同士で結合して、結果的に環状DNAをつくり、最後にDNAリガーゼで3’OHと5’Pをつないであげると、切れ目のない新しい環状二重鎖DNAを形成することができます(図2)。

この方法で、遺伝子をプラスミドに組み込むことができます。プラスミドは独自に複製を行うための複製開始領域を持っていますが、それ以外に抗生物質耐性のゲノムを持たせておきます。こうするとプラスミドを増やしたときにその抗生物質の存在下で細菌を培養すると、抗生物質耐性の遺伝子を持つプラスミドを取り込んだ細菌だけが抗生物質の影響を受けずに増殖するので、プラスミドを取り込んだ細菌を見つけやすくなります。図2ではテトラサイクリン耐性のプラスミドが用いられています。

A_13


初期の組み換え実験に頻繁に用いられたベクターは、図3のようなものです。pBR322と名付けられましたが、pはプラスミド、BRは写真のボイヤーの研究室で働いていたポストドクの Bolivar と Rodriguez の頭文字をとったものです。さまざまな制限酵素でそれぞれ1ヶ所で切断されるように設計されています。抗生物質耐性領域に断点があると、そこが切断された場合耐性が失われるので、2ヶ所に抗生物質耐性領域があります。図3の場合アンピシリン(amp)とテトラサイクリン(tet)に耐性の領域左右にがあります。Eco RI またはNde I を用いた場合には、断点がこれらの領域の外なので、両方の抗生物質耐性領域が生きていることになります。

A_14


遺伝子操作においては、しばしばDNAリガーゼという言葉が登場します。この酵素についてはこのブログでも何度か取り上げていますが(4、5)、基本的に図4Aの様に付着末端どうしがくっついた状態で、最終的に3’OHと5’Pを結合させて断点のないDNAを完成させる役割をもっています。図4Bのような平滑末端同士を結合させるのは苦手です。ところがヴィットリオ・スガラメッラ(6、図4)らは、T4ファージのDNAリガーゼはある条件で平滑末端を結合させることを発見したのです(7、図4B)。

A_15


細胞内では、しばしばDNAの損傷や修復、ウィルスによるDNA合成などに伴って、不要なDNA断片が発生します。これらはすみやかにDNA分解酵素で分解してしまわなければいけません。このような浮遊するジャンクDNAを、非特異的に結合して巨大DNAにしてしまうような酵素はあってはならないものです。実際に細菌や真核生物はこのような酵素を保持しませんが、ファージの中になぜかこのような酵素を持つ者がいたわけです。平滑末端同士を結合できる酵素がみつかったことは、遺伝子組み換えの作業には福音でした。

例えば図5のように Eco RI による切断部位を1ヶ所持つ短い鎖長のリンカーDNA(青灰色)を作成しておき、この断片を研究したいDNA(黄緑色)の両端にT4リガーゼで接続して、その後 Eco RI で切断し、同様に Eco RI で切断したベクターとくっつけると組み換えDNAが完成します(図5)。こうして作成された環状組み換えDNAは、基本的にプラスミドと同じなので、大腸菌に挿入して大腸菌を培養すると、自然にベクターも倍々ゲームで増殖し、したがって目的のDNAを爆発的に増やすことができます。

A_16


もうひとつ、奇妙な酵素について言及しなければなりません。それはターミナルヌクレオチジルトランスフェラーゼ(terminal deoxynucleotidyl transferase)という酵素で、名前が長いのでよく TdT という略称が使われます。この酵素は鋳型(テンプレート)非依存的にDNAを3’OHから延長するというユニークな機能を持っています。図6に示したように、1本鎖または2本鎖でも3’OHが突出したDNAを延長するのが得意ですが、平滑末端を持つ2本鎖の末端3’OHからの延長も可能です。5’Pが突出した2本鎖DNAの3’OHから延長するのは得意ではありませんが、不可能ではないようです。

この酵素はAGCTをランダムに付加していくので、DNAを合成することはできても複製することはできません。しかし実験室では基質としてdATPだけを与えることもできるので、こうするとTdTはAAAAAnのように、DNAの末端にホモポリマーを付加していくような形での反応を行わせることができます(図6)。そもそもなぜこんな奇妙な酵素が存在するのかということですが、哺乳類では抗体やT細胞抗原受容体の多様性を確保するために重要な役割を果たしているようです(8)。本来役に立たないはずの、障害を持った酵素が思わぬ用途で使われる・・・・・まさしく進化は「ケガの功名」を積み上げたものであることを教えてくれる酵素です。

A_17

ポリAとポリTなど相補的ホモポリマーの親和性は高いので、これを利用して図7のように組み換えDNAをつくることができます。両端が平滑のDNAにまずポリAを結合させ、ベクターにはポリTを結合させてアニールすると、組み換えDNAが作成できます。ただAおよびTの数は同じにできないので、あとで調整が必要になります。予め塩基数が決まったホモポリマーを用意して、T4リガーゼで結合しても同様な実験ができます。制限酵素による切断部位からポリAとポリTを延ばすようにすれば、あとで制限酵素によって目的部位を切り出すこともできます。

A_18


ここまで述べてきた組み換えDNA作成技術の前提となる大腸菌にファージやプラスミドを導入する技術は、1970年にハワイ大学のモートン・マンデルと比嘉昭子によって開発されました。彼らは制限能(免疫能)のない大腸菌を、低温下で塩化カルシウム処理すると、外界のDNA断片を菌体内に取り込ませることができることを証明しました(9、10、図8)。

外界DNAを取り込めるようになった細胞をコンピテントセルといいます。コンピテントセルに組み換え型プラスミドを取り込ませ培養すれば増殖させることができます。取り込まなかった細胞を排除するには、たとえばアンピシリン耐性の遺伝子を持つプラスミドを取り込ませた場合、アンピシリンを培地に入れるとプラスミドを取り込まなかった細胞は死滅するので、取り込んだ細胞を選択することができます。

A_19


モートン・マンデルと比嘉昭子の写真は、ウェブサイトを探しましたが残念ながらみつかりませんでした。彼らが先鞭を付けたトランスフェクション(遺伝子導入)の技術は現在にもひきつがれ、さらに哺乳動物細胞や個体への遺伝子導入の方法が盛んに研究されています。

プラスミドを使わずバクテリオファージやウィルスを用いた遺伝子導入の手法があります(11)。ラムダファージが最も有名です。ラムダファージのDNAはファージの殻の中では線状なのですが、両端にCOSという相補的な部位があり、大腸菌に感染すると環状化します(図9)。このDNAをベクター(コスミドベクター)として使いやすいように改変して使用します。

プラスミドと比べてファージ(ウィルス)ペクターの欠点は、ファージ(ウィルス)の殻の中は狭いので、長いDNAを組み込むとはいりきらなくなることです。このため増殖に必要がないファージの遺伝子の一部を切り取って短いベクターをつくり、ある程度長めの遺伝子でも組み込めるようにしてあります(図9)。ファージ(ウィルス)ベクターの利点は、トランスフェクションで苦労しなくても自動的にホストの細胞に侵入してくれることです。

A_20


哺乳動物細胞への遺伝子導入については、未知遺伝子なら導入した遺伝子を発現させて機能を研究する、遺伝子発現を制御する機構について研究する、実験動物に変異遺伝子を発現させて遺伝病を発症させる、遺伝病の動物に正常遺伝子などを移入して治療するなどの研究が行われています。

遺伝子導入の方法はいろいろあって、タカラバイオのサイトから図10にコピペしておきます(12)。いろいろあるといっても、それは試験管の中での実験についての話であって、患者の遺伝子治療に使えそうなのは今のところウィルスベクターを使う方法しかありません。

A_21


ウィルスの場合、ウィルスの中に目的の遺伝子を入れさえすれば感染によって自動的に細胞にはいるので、遺伝子移入は容易なのですが、問題は安全性です。ウィルスもどきが体内で増殖したり、炎症を引き起こしたり、遺伝子発現に影響を与えて病気になるのではお話になりません。

実際1990年代にはすぐにでも臨床に使えるような雰囲気でしたが、どうなったかというと、1999年にペンシルベニア大学で治療中の患者で、注入したアデノウィルスベクターによって全身性の炎症反応がおきて、患者が死亡するという事故が発生し(ゲルジンジャー事件)、さらに2002年にはフランスで2名の患者が白血病を発症するなどの問題がおきて(13)、一気に研究は停滞しました。フランスの事故の場合、レトロウィルスベクターが癌遺伝子の上流に導入されたために、癌遺伝子が活性化して発病したようです(14)。医師・研究者が前のめりになりすぎた結果だと思います。

とはいえ、最近再び遺伝子治療(疾病の治療を目的として遺伝子または遺伝子を導入した細胞を人の体内に投与すること)の機運が盛り上がっており、2018年には遺伝子治療薬がはじめて認可されるようです(15)。まあ過大な期待はしないで見守りましょう(16)。

参考

1)プラスミドってなに? 
http://www.seibutsushi.net/blog/2008/07/513.html

2)Bolivar F, Rodriguez RL, Betlach MC, Boyer HW (1977). "Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9". Gene. 2 (2): 75–93. PMID 344136. doi:10.1016/0378-1119(77)90074-9.

3)Bolivar F, Rodriguez RL, Greene PJ, Betlach MC, Heyneker HL, Boyer HW, Crosa JH, Falkow S (1977). "Construction and characterization of new cloning vehicles. II. A multipurpose cloning system". Gene. 2 (2): 95–113. PMID 344137. doi:10.1016/0378-1119(77)90000-2.

4)ワイス博士の不遇 
http://app.cocolog-nifty.com/t/app/weblog/post?__mode=edit_entry&id=17207703&blog_id=203765

5)岡崎フラグメント
http://app.cocolog-nifty.com/t/app/weblog/post?__mode=edit_entry&id=86368774&blog_id=203765

6)Vittorio Sgaramella
http://www.scienzainrete.it/documenti/autori/vittorio-sgaramella

7)Sgaramella V, Van de Sande JH, Khorana HG., Studies on polynucleotides, C. A novel joining reaction catalyzed by the T4-polynucleotide ligase. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1468-75. (1970)
https://www.ncbi.nlm.nih.gov/pubmed/5274471

8)Edward A. Motea and Anthony J. Berdis, Terminal Deoxynucleotidyl Transferase: The Story of a Misguided DNA Polymerase.,  Biochim Biophys Acta. vol.1804(5):  pp. 1151–1166. (2010)  doi:  10.1016/j.bbapap.2009.06.030
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846215/

9)Mandel, M. and Higa, A. (1970). “Calcium-dependent bacteriophage DNA infection”. Journal of Molecular Biology 53 (1): 159-162. PMID 4922220.
http://www.sciencedirect.com/science/article/pii/0022283670900513

10)Akiko Higa,  Morton Mandel, Factors Influencing Competence of Escherichia coli for Lambda-Phage Deoxyribonucleic Acid Infection., Japanese Journal of Microbiology, Vol. 16, No. 4,  pp. 251-257 (1972)
https://www.jstage.jst.go.jp/article/mandi1957/16/4/16_4_251/_article/-char/ja/

11)R. W. オールド、S.B. プリムローズ著 「遺伝子操作の原理」第5版 倍風館 (2000)

12)タカラバイオ 遺伝子導入実験ハンドブック
http://catalog.takara-bio.co.jp/PDFS/transgenesis_experiment.pdf

13)小澤敬也 遺伝子治療テクノロジーの開発とその応用 ウィルス vol.54, no.1, pp. 49-57 (2004)
https://www.jstage.jst.go.jp/article/jsv/54/1/54_1_49/_pdf

14)島田隆 日本の遺伝子治療の課題 (2013)
http://www.mhlw.go.jp/file.jsp?id=146735&name=2r98520000033pt6.pdf

15)市場調査レポート 2017年版 遺伝子治療薬の将来展望 Seed Planning
http://store.seedplanning.co.jp/item/9516.html

16)CAR-T療法 リンパ球バンク株式会社 (2016)
https://www.lymphocyte-bank.co.jp/blog/medicine/%EF%BD%83%EF%BD%81%EF%BD%92%EF%BC%8D%EF%BD%94%E7%99%82%E6%B3%95/

 

 

| | コメント (0) | トラックバック (0)

2017年8月25日 (金)

やぶにらみ生物論84: DNA塩基配列

フレデリック・サンガーという人(図1)の偉大さは驚異的です。なにしろ生物の主成分である核酸とタンパク質の構成単位(ヌクレオチドとアミノ酸)がどのように配列しているか解析する原理的に全く異なる方法を、両方とも開発したわけですから。彼はまずタンパク質を構成するアミノ酸の配列を解析する手法を開発し、1953年にインシュリンの全一次構造を明らかにして、1958年度のノーベル化学賞を受賞しています。

さらに彼の研究グループは、1977年にジデオキシ法によるDNAの塩基配列解析に成功し(1)、この業績によってサンガーは1980年に2度目のノーベル化学賞を受賞しました。同じ分野のノーベル賞を2回受賞した人は彼以外にはジョン・バーディーン(トランジスタの発明と超伝導理論で2回物理学賞を受賞)しかいませんし、他にノーベル賞を2回受賞した人はマリ・キュリー(物理学賞と化学賞)とライナス・ポーリング(化学賞と平和賞)のみです。

A_11


ジデオキシ法のミソは、通常デオキシリボース5員環の2の位置はHで、3の位置はOHのデオキシヌクレオチジル3リン酸(dNTP)・・・・・の3の位置のOHをHに置換したジデオキシヌクレオチジル3リン酸(ddNTP、図2)を、DNA合成の基質に紛れ込ませることにあります。これまでにも何度も述べているように3の位置にOHがないと、DNAポリメラーゼは鎖を延長できません。したがって運悪くddNTPを取り込んだ場合、DNA合成はそこで停止します。

A_12


ここでdATPにddATPを紛れ込ませたとしましょう。他の3種のデオキシヌクレオチドdTTP、dGTP、dCTPは純粋品でdd型を含みません。そうすると運悪くddATPを取り込んだ場合にだけDNA合成が停止します。従って停止した位置の鋳型の塩基はTということになります。図3の場合、3、9、15番目の位置で停止するのでその位置の鋳型DNAの塩基がTであることがわかります。反応を途中で停止した3種の短いDNA(左端が3’H)は、電気泳動法などによってサイズで識別します。

A_13


新生DNAのサイズを識別するには、鋳型DNAと新生DNAを分離しなければなりません。これにはいくつか方法がありますが、図4のように尿素などを添加して2本鎖のDNAを結びつけている水素結合を引きはがすのが一般的な方法です。尿素は塩基と塩基同士より強力な水素結合をつくることによって、塩基同士の水素結合形成を妨害します。


A_14


高濃度の尿素の存在下で図5のように通電して、DNA断片をポリアクリルアミドゲルの中に誘導すると、ポリアクリルアミドの架橋した立体構造の中で動きにくい高分子のDNA断片は遅く、動きやすい低分子の断片は早く移動し、図3の右図のように分離することができ、かつレファレンスと同時に泳動することによって分子量(鎖長)も決定できます(2、3)。DNAは酸性(マイナスチャージ)なので、電流とは逆方向に移動することになります。

A_15

塩基配列決定を効率的に行うための技術開発は現在に至るまで活発に行われていますが、そのきっかけになったのはジデオキしヌクレオチドを蛍光物質で標識しておくという技術です。この技術を開発したのは誰なのかということに興味を持って少し調べましたが、ちょっと複雑な経緯があるので最後に述べます。実際にはサーモフィッシャーという会社で売っているBig Dye (4)などを使ってシーケンシングは実行されています。

4種のddNTPをそれぞれ別の蛍光色素で標識しておくと、同時にひとつの試験管で反応させても、色つきの生成物を分析すれば一挙に塩基配列が可能となります。さらに図6のようなオートメーションを使えば、簡単に塩基配列のチャートが入手できます。

A_16


サンガー法ではDNAポリメラーゼという酵素を使うので、それなりの不安定性やエラーがあります。マクサム・ギルバート法では化学的に特定の塩基の部分でDNAを切断します。この方が安定性は高いのですが、たとえばギ酸を使用した場合、GとAの両方の塩基で切断されるなど特異性に問題がある(図7)ほか、使用する試薬はすべてDNAを切断する作用を持つ危険な化合物なので、現在ではほとんど使用されていません。

しかしこの方法を開発したウォルター・ギルバートは、フレデリック・サンガーと共に1980にノーベル化学賞を受賞しています。テクノロジーで授賞すると、それより便利なテクノロジーが出現した途端に使われなくなり忘れ去られるというリスクがありますが、ギルバートの場合もそれに近いような状況です。アラン・マクサムに至っては写真もみつかりませんでした。

A_17


ジア・グオはサンガー法をさらに発展させました。彼はddNTPにとりはずしのできる蛍光色素を結合させ、さらに3’OHも付け外しができるようなシステムを開発しました(5、図8)。反応開始後最初に結合したddNTPを同定し、色を確認してから蛍光色素をとりはずして、さらに3’Hを3’OHにして次の反応を行うというプロセスを繰り返すことによって、理論的には無限の長さのDNAシーケンシングをオートメーションで行うことが可能となりました。

A_18


もうすこし具体的に書けば

1)DNAの断片を作成し、断片末端にアダプターを結合させる。

2)PCR法(次回か次々回で述べる予定)で大量にDNA断片を複製したのち精製する。

3)DNA断片のアダプターを相補的配列を持つオリゴDNAで補足し、補足したDNAを増幅してクローンを作成する。

4)可変型蛍光標識ターミネータ(それぞれddNTPに代替する)4種を入れてフローセルでDNA合成を行わせる。

5)フローセル内でDNAクローンにとりこまれた最初のターミネータを蛍光励起法で同定する。

6)いったんDNA断片端の蛍光をはずし、3’OHを付けてDNA鎖を伸長させる。

7)4、5、6のステップを n回繰り返して、長さ n の断片のシーケンシングを実行する。

8)数百万個の断片を大量並列的に解析するので、高速でシーケンシングすることが可能になった。

9)各断片の塩基配列を、コンピュータを用いてアライメント(図9、後述)を行い、断片化する前の全DNAの配列を決定する。

10)DNAライブラリーごとに、別のアダプターを結合させておけば、3のステップでクローンごとにどのライブラリーのDNAか識別できるので、一気に複数のライブラリーのDNAを解析することが可能です。

ここでアライメントという言葉が出てきましたが、これはDNAシーケンシングで得られたDNA断片のデータをもとに、より長いDNAの塩基配列を決めるプロセスのことで、図9で説明しますと、5つのDNA断片セットをそれぞれサンガー法で解析して、より長い青色のDNAの全塩基配列が明らかになって、それをコンティグ1としますと、同様にコンティグ5までのデータを得て、それぞれの末端の配列を比較することによって各コンティグの並び方を決め、さらに長いDNAの配列を確定します。このような作業をアラインメントといいます。

A_19


シーケンシングの技術は日進月歩で、イルミナ社の「次世代シーケンステクノロジーのご紹介」というパンフレットをみると、図10のような進歩の歴史が書いてありました(6)。

A_20


新しい情報はオミックスクラブ(7)などで知ることができます。私が少し興味をひかれたのは、電子顕微鏡を用いたDNAシーケンシングで、この場合dNTPは重金属でラベルしておき、1本鎖DNAを視野にきれいに並べて、視野の広さ分の塩基配列を一気に読み取るというやり方です(8)。しかしサンプルを重ならないようきれいに並べるというのは、電子顕微鏡レベルでは非常に難しい技術で、成功寸前まで行きながら資金ショートで倒産した会社もあるようです。

ところでddNTPに4種の蛍光物質を結合させてシーケンシングを効率的に行うというアイデアはもともと伏見譲のアイデアで、1982年10月の第20回日本生物物理学会で発表されたそうです(9)。1983年に研究を実際に担当していた土屋政幸は修士論文を発表しました(9)。当然ネイチャーかサイエンスに発表すべき研究結果でしたが、伏見は十分な自信を持てないという理由でそれをしませんでした。それでも1983年に特許は申請しました。ところが1984年になって、当時の科学技術庁が「国から研究資金をもらっておいて、特許はないんじゃないですか」という横やりが入って、伏見は特許申請を取り下げるということになりました。結局カリフォルニア工科大学のグループ(Mike Hunkapiller, Tim Hunkapillar, and Applied Biosystems)が1984年に申請した特許が結局最終的に有効となって、伏見は完敗となりました(10)。

この話はこれで終わりではなく、このアイデアは Hunkapillar 兄弟のものではなく自分のものだという同じ研究室にいた人物が現れたのです。それは Henry Huang という人で、裁判をおこしましたが敗北しました(10)。そういうわけで、4種の蛍光物質でddNTPをラベルしてシーケンシングするというアイデアは誰のものなのかは霧の中で、特許だけが厳然と残るという結果になりました。

私は基礎研究に多額の公的資金が投入されているのは事実なので、当時の科学技術庁の横やりはもっともだと思います。特許争いに大きなエネルギーをそそぐくらいなら、さっさと公表して誰でも使えるようにしたほうがよいと思いますし、国際社会が基礎科学の分野では特許至上主義から抜け出すべきだとも思います。研究者は研究資金とポストで処遇されるべきでしょう。

これに対する反論は、研究者といえども前に特許というニンジンをつるしたほうが、一生懸命走るという考え方に基づいています。それはそうかもしれませんが、上記の理由の他、特許獲得には大きなエネルギ-が必要ですし、ダークな側面がつきまとうということも事実です。最後に伏見譲先生はこのような方です(11)。

参照

1)F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors., Proc. Nati. Acad. Sci. USAVol.74, No.12, pp.5463-5467,(1977)
http://www.pnas.org/content/74/12/5463.full.pdf

2)Heike Summer, René Grämer, and Peter Dröge, Denaturing Urea Polyacrylamide Gel Electrophoresis (Urea PAGE).,  J Vis Exp.,  vol. 32., p. 1485. (2009)
doi:  10.3791/1485
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3329804/

3)Denaturing Polyacrylamide/Urea Gel Electrophoresis
https://tools.thermofisher.com/content/sfs/manuals/MAN0011970_Denaturing_PolyacrylamideUrea_Gel_Electrophoresis_UG.pdf

4)https://www.thermofisher.com/order/catalog/product/4337455

5)Jia Guo et al, Four-color DNA sequencing with 3′-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides, Proc. Natl. Acad. Sci. USA,  vol. 105 (27), pp.9145-9150 (2008)
https://www.ncbi.nlm.nih.gov/pubmed/18591653

6)jp.illumina.com/technology/next-generation-sequencing.html

7)http://omics-club.blogspot.jp/

8)http://omics-club.blogspot.jp/2013/08/20130820.html

9)岸宣仁著 「ゲノム敗北 知財立国日本が危ない!」 ダイヤモンド社 (2004)
https://books.google.co.jp/books?id=IVRKAAAAQBAJ&pg=PT36&lpg=PT36&dq=%E3%83%9E%E3%82%AF%E3%82%B5%E3%83%A0%E3%83%BB%E3%82%AE%E3%83%AB%E3%83%90%E3%83%BC%E3%83%88%E6%B3%95&source=bl&ots=c7UnsDbmjl&sig=3ssOCV3KUo0X6Hk0RbxgfyWqNdY&hl=ja&sa=X&ved=0ahUKEwjWkbvHtezVAhXKp5QKHXrIBc04ChDoAQhIMAc#v=onepage&q=%E3%83%9E%E3%82%AF%E3%82%B5%E3%83%A0%E3%83%BB%E3%82%AE%E3%83%AB%E3%83%90%E3%83%BC%E3%83%88%E6%B3%95&f=false

10)https://plaza.rakuten.co.jp/cozycoach/diary/200412260000/

11)伏見譲 http://cpis.soken.ac.jp/Lab_note/Hushimi.html

| | コメント (0) | トラックバック (0)

2017年8月14日 (月)

やぶにらみ生物論83: 制限酵素

細菌にとって最大の天敵はバクテリオファージ(ウィルス)です。この寄生体はホスト細菌の細胞壁にとりついて、注射器のようなツールでDNAを注入し、細菌のDNAにまぎれこませたり、あるいは直ちに細菌の中にある栄養物質を使って増殖し、殻もつくってホストを殺して外に出たりするわけです。

ベルタ-ニとワイグルはこの現象を研究しているうちに不思議な現象を発見しました(1)。それは、ある系統の大腸菌で生育させたファージを別系統の大腸菌に感染させると、そこで生育したファージは感染能を失っている場合があるということです(図1、赤で示した!は感染能の喪失を示します)。すなわち大腸菌はP2やλファージの感染性を制御する能力を持っているということを意味します。彼らはこの現象が遺伝子の突然変異によるものではないことを示しましたが、そのメカニズムは解明できませんでした。他にもこの現象に気がついていた研究者もいましたが、誰もメカニズムを解明できませんでした(2)。

A_9


アルバー(図2)はジュネーヴ大学を卒業して、電子顕微鏡のオペレーターの仕事をしていましたが、そこからファージの研究に転身して、λファージを大腸菌に感染させる仕事をしていました。そしてλファージが大腸菌の中で、うまく増殖してくれないことに関心を持って研究を進めるうちに、λファージDNAを放射性のP(32P)でラベルして感染させると、大腸菌のなかでDNAが分解され、32Pは可溶性分画に出てくることがわかりました(3)。まさしく大腸菌の免疫機構が発動して、ファージを分解していたのです。

A_10

1960年代には、この免疫機構にS-アデノシルメチオニンが必要なことや、DNAのメチル化がかかわっていることがわかってきました。すなわち修飾がないとファージと同様に分解酵素でアタックされるはずの大腸菌DNAの切断部位が、メチル化されることによって切断を免れることが判明しました(4)。

ファージのDNAを分解する酵素を制限酵素 (ファージの増殖を制限するという意味 英語では restriction endonuclease) といい、DNAを保護するDNAメチラーゼとあわせて制限修飾系(R-Mシステム)ともいいます。

制限酵素を大腸菌から最初に精製したのはメセルソンとユアンでした(5)。この酵素はその後 I 型制限酵素と呼ばれ、DNA鎖上の特異的な塩基配列を認識しますが、DNAを切断する部位は認識部位から400~7000塩基(bp)も離れたところにあるので、遺伝子工学の研究者からは「使えない」酵素として忘れ去られました。大腸菌にしてみれば、自分のゲノムは切断されず、進入してきたファージDNAを切断してくれるわけですから、I 型でも十分用は足りているわけです。

I 型制限酵素はDNAを切断するRサブユニット2個、DNAをメチル化するMサブユニット2個、DNAの塩基配列を認識するSサブユニット1個の計5つのサブユニットからなり、同じ塩基配列を認識しても、ホストのDNAはメチル化し、ファージのDNAは切断するという複数の役割をひとつの分子が行なうことができます(6、図3)。Sサブユニットもふたつのドメインが逆向きに重なったような構造で、2本の αヘリックスからなるバーの両端に塩基配列認識部位があるので、離れた2ヶ所で塩基配列を認識します。I 型制限酵素は認識した塩基配列から離れた位置でDNAを切断する点、そしてメチラーゼ活性を持っているという点で遺伝子工学のツールとしては基本的に不適切でした。

A_11


ハミルトン・スミス(図2)は大学では数学を専攻していました。その後カリフォルニア大学、ジョンズ・ホプキンス大学と渡り歩いて医師になりました(7、8)。ところが彼はアルバーが制限酵素を発見したことに興味を持ち、ちょうど自分の研究室を持てることになったので、せっかく資格を得た医師の仕事を棄てて研究者になりました。アルバーが使った大腸菌とは異なるインフルエンザ菌(昔この菌がインフルエンザの病原体と考えられていた時期があり、その名残で名前が残っている)の制限酵素を調べてみました(8)。

実験材料だけ換えて追試するというのはバカにされがちですが、これも必要な研究ですし、ときには思いがけない重要な発見もあるのです。まさにハミルトン・スミスは彼の最初の学生だったケント・ウィルコックスと共に驚きの実験結果を得ました。

インフルエンザ菌の制限酵素はなんと認識した塩基配列を、その位置で切断したのです(9、図4)。この酵素は現在Hinc II(またはHind II) とよばれています。図4にみられるように Hinc II は1種類の塩基配列だけ認識するわけではなく、若干の幅があって、4種類の塩基配列を認識し、その中央でDNAを切断します。

II 型制限酵素は、I 型のようにATPやS-アデノシルメチオニンを必要とせず、マグネシウムイオンのみを要求する酵素反応を行います。またほとんどはDNAメチラーゼの活性をもっておらず、制限修飾系は別の分子であるDNAメチラーゼと協力して成立します。

A_12


ハミルトン・スミスの研究結果は燎原の火のように広がり、われもわれもと新しい制限酵素の発見競争がはじまりました。そのなかのひとりがダニエル・ネイサンズ(図2)でした。

彼はSV40というヒトやサルに感染するウィルスを研究していましたが、このウィルスのDNAをハミルトン・スミスの酵素で処理すると最大11個の断片に切断することができました(10)。これはDNAの塩基配列の研究に非常に有用であり、かつ塩基配列レベルでの遺伝子地図の作成が可能であることを示唆しました(図5)。

例えば図5で、あるDNAを制限酵素赤で切断して3つの断片A,B,Cが得られたとします。それだけでは各断片の塩基配列を解析してもABCの順番はわかりません。

しかし同じDNAを制限酵素青で切断して4つの断片が得られ、そのうちひとつの断片の左側(2’)が断片Aの右側(2)と一致し、右側(3’)が断片Bの左側(3)と一致すれば、断片Aは断片Bの左隣であることがわかります。同様に断片B、Cについても調べれば、BがCの左隣であることがわかり、制限酵素赤で切断した結果の3断片はABCの順に並んでいることがわかります。

A_13


アルバー、スミス、ネイサンズの3人(図2)は1978年にノーベル生理学医学賞を受賞しました(11)。その受賞理由は「for the discovery of restriction enzymes and their application to problems of molecular genetics」となっています。生理学医学賞で application to という言葉が使われたのははじめてです。すなわち生理学医学の領域においてもサイエンスのみならず、テクノロジーの分野における貢献もノーベル賞の対象になるということを、彼らは示しました。

さて、次々とみつかった II 型制限酵素を統一的に命名し整理することが必要になりました。スミスとネイサンズは1978年に命名法の基準を提案しましたが(12)、現在でもほぼ彼らの考え方に沿った形で命名が行われています。

1.当該制限酵素を産生する生物の属名の先頭の1文字、種名の先頭の2文字を記す。例えば大腸菌なら学名は Escherichia Coli ですから Eco、インフルエンザ菌なら Haemophilus influenzae ですから Hin となります。

2.制限酵素の由来がその生物のゲノムではなく、潜在ウィルスやプラスミドに由来する場合はそれらの頭文字(大文字)を記す。例えば EcoR。

3.生物の株によって産生する酵素が異なる場合、株名を記す。例えばHaemophilus influenzae のd 株(小文字)なら Hind となる。

4.同じ株が複数の制限酵素を産生する場合は、それぞれローマ数字をつける。例えばHaemophilus influenzae のd 株は3種の制限酵素を産生するので、それぞれ Hind I, Hind II, Hind III となります。

制限酵素によるDNA切断の様式を大きく分類すると、図6のような3種類になります。平滑末端を作るタイプの制限酵素は、リボンをハサミで切断するように、突出部位の無い平滑な末端(blunt end)をつくります。

5’ が突出するタイプの末端をつくる酵素は、DNAの両鎖ともに5’ が突出した末端が形成されます。Hind III の場合TCGAとAGCTという相補的な末端ができるので、これらは再びくっつき易いという特徴をもっています(cohesive end)。また3’-OH があって鋳型もあるわけですから、DNAポリメラーゼのよい標的になります。3’ が突出するタイプの末端を作る酵素は5’突出型と同様な特徴がありますが、DNAポリメラーゼの標的にはなりません。

A_14


現在4000種類の制限酵素がみつかっており、そのうち600種類は市販されているそうです(13)。

ところで図6の塩基配列をみればわかりますが、制限酵素が認識する部位は塩基配列が回文構造になっています。回文とはアニマルマニアのように前から読んでも後ろから読んでも同じ文のことですが、たとえばHind IIIが認識する配列は、AAGCTTであり、これ自体は回文ではありませんが、対面するDNAの塩基配列はTTCGAAであり、180度回転対称となっているので、この意味で回文構造と称しているわけです。

どうしてこのような構造になったのかの説明ですが、図7に示したように、回文配列はDNAの裏から酵素がアプローチしても塩基配列を認識できることから、2倍の効率のためという説がありますが、どうでしょう? 2倍の効率というのはちょっと低すぎると思います。実際には回文配列の部分が特異な構造なので、熱力学的に切断に要する化学エネルギーが少なくて済むからという可能性もあると思います。またII型制限酵素はホモダイマーあるいはテトラマーであり、同時にDNAの表裏を認識していると思われ、このような認識様式を利用して切断するというやり方が進化の初期に定まったというのがひとつの理由なのかもしれません(14)。

A_15


II 型制限酵素を使うと、自在にDNAを切断して再連結することができるので、例えば図8のように別種のDNA(AとB)をそれぞれHind III で処理し混合すると、それぞれAGCT、TCGAという相補的な突出部位を持っているので、再連結させることができます(アニーリング)。そしてDNAリガーゼで3’OHと5’Pを接続すると、AとBを連結したハイブリッドDNAができあがります(15)。

これはAという菌とBという別種の菌を融合した新種の菌ができる可能性を示唆しており、まさしく科学が神の領域にまで進出したということで騒ぎになりました。しかし誰も科学技術の進歩は止められず、20世紀末にDNAの加工に関連したテクノロジーは大発展をとげることになります。

A_16


細菌は I、II 型とは異なるタイプの制限酵素ももっていて、むしろ III 型はより一般的なのかもしれません。III 型制限酵素はエンドヌクレアーゼのサブユニット2+DNAメチラーゼのサブユニット2で構成されていて、I型のように塩基配列認識のためのサブユニットがないので、それぞれの酵素活性をもつサブユニットが認識していると思われます(16)。

例えばサルモネラ菌の StyL TI は5’-CAGAG-3’ という塩基配列を認識します。III 型はこの認識部位でDNAを切断するのではなく、25-27bp下流(3’側)で切断します。DNA切断にはマグネシウムイオンとATP、メチル化にはマグネシウムイオンとS-アデノシルメチオニンが必要です。細菌とファージの戦いは熾烈で永遠です。このほかにも IV型、V型などの制限酵素がみつかっているようです(17)。


参照

1)G. Bertani and J. J. Weigle., HOST CONTROLLED VARIATION IN BACTERIAL VIRUSES, J Bacteriol., vol. 65(2), pp.113-121. (1953)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC169650/

2)Luria SE. Host-induced modifications of viruses, Cold Spring Harb. Symp. Quant. Biol., vol.18, pp.237-244 (1953)

3)Daisy Dussoix,Werner Arber., Host specificity of DNA produced by Escherichia coli: II. Control over acceptance of DNA from infecting phage λ., Journal of Molecular Biology, Vol.5, Issue 1, pp.37-49 (1962)
http://www.sciencedirect.com/science/article/pii/S002228366280059X?via%3Dihub

4)Werner Arber and Stuart Linn., DNA modification and restriction.,  Annual Review of Biochemistry., Vol.38, pp.467-500 (1969)

5)Matthew Meselson and Robert Yuan., DNA restriction enzyme from E.Coli., Nature 217, 1110-1114 (1968). doi:10.1038/2171110a0
https://www.nature.com/scitable/content/DNA-Restriction-Enzyme-from-E-coli-12388

6)Wil A. M. Loenen, David T. F. Dryden, Elisabeth A. Raleigh and Geoffrey G. Wilson., SURVEY AND SUMMARY  Type I restriction enzymes and their relatives.,  Nucleic Acids Research, Vol. 42, No. 1, pp. 20-44 (2014)
doi:10.1093/nar/gkt847

7)https://en.wikipedia.org/wiki/Hamilton_O._Smith

8)Jane Gitschier, A Half-Century of Inspiration: An Interview with Hamilton Smith. PLoS Genetics vol. 8, pp. 1-5 (2012)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257296/pdf/pgen.1002466.pdf

9)Hamilton O. Smith and Kent W. Welcox., A Restriction enzyme from Hemophilus influenzae: I. Purification and general properties., Journal of Molecular Biology
Vol. 51, Issue 2,  pp. 379-391 (1970)
http://www.sciencedirect.com/science/article/pii/002228367090149X?via%3Dihub

10)The Daniel Nathans Papers.  Restriction Enzymes and the "New Genetics," 1970-1980. US National Library of Medicine., NIH
https://profiles.nlm.nih.gov/ps/retrieve/Narrative/PD/p-nid/325

11)The Nobel Prize in Physiology or Medicine 1978
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1978/

12)Smith HO, Nathans D., A suggested nomenclature for bacterial host modification and restriction systems and their enzymes., J Mol Biol.. vol. 81(3), pp. 419-23. (1973)

13)https://www.thermofisher.com/jp/ja/home/life-science/cloning/cloning-learning-center/invitrogen-school-of-molecular-biology/molecular-cloning/restriction-enzymes/restriction-enzyme-basics.html

14)Pingoud A, Fuxreiter M, Pingoud V, Wende W., Type II restriction endonucleases: structure and mechanism., Cell Mol Life Sci., vol. 62(6), pp. 685-707. (2005)
https://www.ncbi.nlm.nih.gov/pubmed/15770420

15)R.W.オールド、S.B.プリムローズ 「遺伝子操作の原理」 第5版 関口睦夫監訳 培風館 (2000)

16)Desirazu N. Rao, David T. F. Dryden and Shivakumara Bheemanaik., SURVEY AND SUMMARY Type III restriction-modification enzymes: a historical perspective., Nucleic Acids Research, Vol. 42, No. 1 pp. 45–55 (2014)  doi:10.1093/nar/gkt616

17)https://en.wikipedia.org/wiki/Restriction_enzyme

| | コメント (0) | トラックバック (0)

2017年8月 5日 (土)

やぶにらみ生物論82: 染色体3

減数分裂がおこるときには、体細胞分裂ではおこらない不思議な染色体の行動が観察されます。それは相同染色体を探してペアを形成することです。それぞれの染色体は2nですから、このペアは4nの遺伝情報を持っていることになります(図1)。このペアリングのことを日本語では相同染色体対合、英語では homologous chromosome pairing といいます。

この後2回の細胞分裂が起こって、4個の細胞(遺伝情報はそれぞれn)が生まれ、精子あるいは卵子となります。図1はこの1回目の細胞分裂と、通常の体細胞分裂を比較して示したものです。減数分裂の最初のステップで、染色体はどうやって相同染色体を探してペアリング(対合)するのでしょうか? 私はこの現象に関連する研究はやったことがありませんが、このことは学生時代からとても不思議で、いつも頭の片隅にひっかかっていました。

A_9


ペアリングがおこると染色分体同士がキアズマを形成して一部の遺伝情報を交換し、いわゆる染色体の組み換えを行うことが容易になるという利点があります(1、図2)。ただこのためだけにペアリングが行われるのかどうかはわかりません。その後の減数分裂の進行に必要なのかもしれません。

A_10


減数分裂時の相同染色体ペアリングは、マウス・ショウジョウバエ・酵母・シロイヌナズナ・小麦・コメ・たまねぎなどさまざまな生物で確認されています(3)。不可解なのは、相同染色体のペアリングの前に非特異的な染色体のペアリングがみられることです。Obeso らはこれをペアリングと呼ぶのはおかしいということで、カップリングと呼んでいます(3)。カップリングの意味は全くわかっていません。

Obeso らはカップリングからペアリングへの切り替えは、セントロメア近辺でおこるプログラムされたDNA損傷修復が引き金となっておこると述べています(3)。このことはカップルとなっている染色体を切り離すと言う意味があるかもしれません。しかしペアリングそのもののプロセスや染色体ペアの安定化はDNA損傷修復とは関係がないというのがコンセンサスになっています(4-5)。

現在問題となっているのは、ペアリングがセントロメア主導なのか、短腕・長腕での相互作用が機能しているのかという非常にプリミティヴなことで、まだまだ解決にはほど遠い感じがします。ただZip1というタンパク質が関係していると言うことは昔から言われています(6、7)。Zip1を欠く突然変異体では、ペアリングは成功しません(8、9)。Obeso らのモデルを図3に示しますが、これが正しいかどうかはわかりませんし、これはあくまでもペアリングした結果であって、どのような機構で染色体が正しいペアリングの相手をみつけたかはわかりません。

A_11



染色体というセクションの中で、もうひとつ述べておかなければならないことがあります。細菌や古細菌のDNAは環状であるのに対して、真核生物のDNA(クロマチン)は線状です。おそらく古細菌の中に線状のDNAを持つグループがいて、そのなかから真核生物が生まれたのではないでしょうか。現在ではその真核生物のルーツとおぼしきグループは絶滅したために、古細菌と真核生物のつながりがたどれなくなったと思われます。

線状DNAのメリットあるいはアドバンテージが何であるかということはよくわかりません。ただ原核生物にも真核生物にも線状のプラスミドを持つ生物がいることが知られています(10)。おそらく最初に線状化したのはプラスミドで、そのメカニズムを利用して、本家のDNAを線状化することに成功したのでしょう。線状DNAは環状DNAと違って、積み木のパーツとして使うことができるというメリットがあるかもしれません。例えば(本家DNA)-(プラスミド)-(別個体のDNA)という風につなげば、2n分のDNAを1分子としてまとめることができます。

メリットはともかくとして、線状DNAには大きなデメリットがあります。それは複製したDNAが短くなってしまうからです。どうしてそんなバカなことになるのでしょうか? それはやはり生物が歴史の産物だからです。何億年もDNAはプライマーRNAの3’OHを起点として複製されてきたので(11)、図4のように複製された新DNAの端にあるRNAプライマー(赤の点線)を除去したときに、線状DNAだと5’Pが露出するDNA末端をどうしようもないのです。地球上のどんなDNAポリメラーゼも5’P側からDNA鎖を延長することはできません。もしこれが環状DNAならば、ぐるっと一周した反対側に3’OHがあるので、そこからDNAを伸ばして連結できるのですが、線状だと何もないのでプライマーRNAの分だけDNA鎖が短くなってしまいます。

A_13

それともうひとつの問題は、DNAに端が存在するとそこから核酸分解酵素(エクソヌクレアーゼ)にDNAがかじられて、さらに鎖長が短くなってしまうおそれがあるということです。メッセンジャーRNAのように一時的にしか存在しない核酸分子でも、端はキャップとポリAでブロックされています。

この問題に最初に言及したのはハーマン・マラー(12)でした。マラーはX線によって生物に突然変異が発生することを発見し、それによって1946年にノーベル生理学医学賞を受賞しています。マラーはテロメアという言葉を発明し、染色体の逆位の研究などから染色体の末端が特別な構造になっていると予測しました。また動く遺伝子で後にノーベル賞を受賞したバーバラ・マクリントックも、染色体の端にはなんらかの先端キャップのような構造があることを指摘しました(13)。

しかしテロメアの構造と合成酵素が解明されたのは1970年代後半からで、エリザベス・ブラックバーン、キャロライン(キャロル)・グライダー、ジャック・ショスタクの3人が、この功績で2009年にノーベル生理学医学賞を受賞しています。彼らは鋳型RNAをかかえこんでいる酵素テロメラーゼによって、その鋳型を使用して線状DNAの末端に特殊な繰り返し構造が作られることを解明しました(14、15、図5)。

A_14


なおテロメアの塩基配列は生物によって異なっています(図6)。初期はテトラヒメナ(繊毛虫)を用いた研究が多かったので、図5ではTTGGGGという塩基配列が採用されています。かなり異なる塩基配列を用いている生物もいますが、ヒト・アカパンカビ(Neurospora crassa)・モジホコリ(Physarum polycephalum)・トリパノソーマで共通(TTAGGG)、昆虫(TTAGG)や植物の一部(TTTAGGG)とも1塩基違いというのは、強く保存された塩基配列と言えます。

A_15

テロメア形成の方法は図5では簡単すぎるので、別に図7(ウィキペディアより、16)を示して説明します。

1.複製終了後のDNA末端は5’末端のプライマーRNAが分解されて、その後を埋められず片鎖が短い状態です。
2.DNA末端にはテロメアに特異的な塩基配列があり、テロメラーゼは保有するRNAの相補的配列を利用してテロメアの末端に結合します。
3.テロメラーゼはテロメアDNA末端の3’OHと、自分が保有する鋳型RNAを使って、RNA-directed DNA polymerase 活性でテロメアを延長することができます。
4.2と3を繰り返すことによって、どんどんテロメアを延長します。したがってテロメアの塩基配列は同じ塩基配列がリピートした構造になります。
5.2~4の反応とは別に、テロメラーゼが保有するRNAの3’OH末端から、ギャップを埋め戻す反応をDNAポリメラーゼ(これはテロメラーゼではなく、DNA-directed DNA polymerase) を用いて行うことができます。この場合テロメラーゼのRNAはプライマーとして用いられます。

A_16

おそらく最初にDNA末端と結合したテロメラーゼはテロメアを自分保有の鋳型分延長すると、鋳型だけ残してDNAから離れるのではないでしょうか。このときに逆方向のDNA埋め戻しが行われ、鋳型RNAが分解されてから再びテロメラーゼが結合すると考えると説明しやすく感じます。

いずれにしても、このようにテロメラーゼがテロメアに結合することによって、テロメアの延長と短くなったDNAの修復が同時にできるので、これは素晴らしいメカニズムです。古細菌から真核生物に進化する過程で獲得された、このエンジニアが設計図を描いて制作したような巧妙な仕掛けに、私は茫然とするしかありません。

テロメアはテロメラーゼの活性が強いか弱いかなどの影響で、長い細胞と短い細胞があります。生物種によっても違います。一般的に通常の体細胞は培養していると、50~70回細胞分裂を繰り返すと、分裂を停止します。図8(ウィキペディアより)には分裂回数が省略して書いてありますが(実際には50~70回)、テロメラーゼの活性が無いか低くてテロメアが短くなってくると、安全装置のようなものが働いて細胞分裂が停止すると考えられています。一方生殖細胞・がん細胞などではテロメラーゼ活性が強く、細胞分裂を行ってもテロメアは短縮されにくいようです。

A_17


明らかにテロメアは細胞の寿命に関係していますが、テロメアを延長さえすれば細胞寿命が長くなると考えるのは早計です。実験用のマウスはヒトの数倍の長いテロメアを持っている上に、体細胞にもテロメラーゼの発現があることが知られています。しかしマウスの体細胞を培養すると、ヒトより早く分裂を停止しますし、そのときのテロメアは長いままです。だいたいマウスの寿命はヒトより30倍も短いので、テロメアが長ければ長生きできるというわけではありません。しかしテロメラーゼを欠損するマウスを作成すると、寿命が短縮されるというのもまた事実です。そしてこのようなマウスでテロメアを復活させると、若返りが実現します(17)。

しかし生きるために必要な遺伝子の変異や欠損は寿命の短縮を招く可能性があるわけで、テロメラーゼの変異だけが寿命を短縮させるわけではありません。さらにテロメアの短縮以外にも老化の理由は存在するということで、それらを解明しない限り不老不死は実現できません。たとえばDNAの修復に欠陥があれば、老化は進むでしょう。

ただテロメラーゼを活性化すれば、肌の若返りくらいは可能かもしれません。ビル・アンドリュースなど大まじめに取り組んでいる人々もいます(18)。このクリームを塗ったら皮膚癌が増えたなんてことにならないよう祈りたいです。アマゾンで売っているかどうか調べたらありました。50gのビンが194400円です。

31tgbb1yehl__ac_us160_

defytime TAA cream

 

参照

1)Bruce Alberts et al., Essential Cell Biology 4th edn., pp.645-657, Garland Science (2014)

2)染色体とその組み換え 遺伝子博物館
https://www.nig.ac.jp/museum/history/06_d.html

3)David Obeso, Roberto J Pezza, and Dean Dawson, Couples, Pairs, and Clusters: Mechanisms and Implications of Centromere Associations in Meiosis., Chromosoma., vol.123, pp.43-55. (2014) doi:10.1007/s00412-013-0439-4.

4)Clarke L, Carbon J. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature, vol.305, pp.23-28.(1983)

5)Bisig C.G.et al., Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLoS genetics. Published: June 28, 2012
http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002701

6)Sym M, Roeder GS. Zip1-induced changes in synaptonemal complex structure and polycomplexassembly. J Cell Biol., vol.128, pp.455-466.(1995) PMID: 7860625

7)Xiangyu Chen et al., Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis. PLoS Biol 13(12): e1002329. doi:10.1371/journal.pbio.1002329

8)Gladstone MN, Obeso D, Chuong H, Dawson DS. The synaptonemal complex protein Zip1 promotes bi-orientation of centromeres at meiosis I. PLoS genetics. 2009; 5:e1000771.

9)Newnham L, Jordan P, Rockmill B, Roeder GS, Hoffmann E. The synaptonemal complex protein Zip1, promotes the segregation of nonexchange chromosomes at meiosis I. Proc Natl Acad Sci USA., vol.107, pp.781-785. (2010)

10)郡家徳郎, 徳永正雄 酵母線状DNAプラスミドとキラーシステム ウイルスとの接点 化学と生物 vol. 41, pp. 832-841 (2003)
https://www.jstage.jst.go.jp/article/kagakutoseibutsu1962/41/12/41_12_832/_pdf

11)http://morph.way-nifty.com/grey/2016/11/post-7f79.html

12)Muller, H.J. The remaking of chromosomes. Collect. Net, vol. 13, pp. 181–195. (1938)

13)McClintock, B. The Association of Mutants with Homozygous Deficiencies in Zea Mays. Genetics, vol. 26, pp. 542–571. (1941)

14)http://www.nobelprize.org/nobel_prizes/medicine/laureates/2009/press.html or http://www.nobelprize.org/nobel_prizes/medicine/laureates/2009/bild_press_eng.pdf

15)中山潤一 解説 2009年ノーベル賞を読み解く 生理学医学賞 細胞のがん化・老化にかかわるテロメアとは? 
http://www.nsc.nagoya-cu.ac.jp/~jnakayam/_src/sc734/pubj12.pdf

16)https://en.wikipedia.org/wiki/Telomerase

17)Mariela Jaskelioff et al., Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice., Nature, vol. 469(7328): pp. 102–106 (2011)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057569/
http://www.med.keio.ac.jp/gcoe-stemcell/treatise/2011/20110725_02.html

18)http://テロメア.com/

| | コメント (0) | トラックバック (0)

2017年7月28日 (金)

やぶにらみ生物論81: 染色体2

一般的に真核生物のDNAは核内においてタンパク質との複合体である「クロマチン(Chromatin)」の状態で存在します。その構成単位はヌクレオソーム(Nucleosome)と呼ばれ、4種類のヒストン(Histone)、すなわちヒストンH2A、ヒストンH2B、ヒストンH3、ヒストンH4それぞれ2つずつのタンパク質分子から成る8量体のコア・ヒストンに、DNA が巻きついた構造を取ります。ヒストンH1はコア・ヒストンには含まれず、リンカー・ヒストンと呼ばれ、ヌクレオソーム内のDNAを安定化する役割があります。

細胞が分裂するM期においては、クロマチンは極端に凝縮した染色体という構造をとります(図1A)。このような状態では転写やDNA複製のための複合体はDNAにアクセスできないため、DNAの情報の読み取りという観点から言えば、染色体は極めて不活性な状態にあります。一方未分化な状態の細胞、たとえば卵割期の細胞や幹細胞などでは、様々なDNAの情報が読み取り可能で、ヌクレオソームとヌクレオソームの間に広い間隙が存在します(図1C)。

そして最も一般的な核の状態は、図1Bのように一部はヘテロクロマチンを形成して核膜の裏側に結合して不活性な状態にあり、一部は核内で流動的な状態で、図1Cと同様ヌクレオソーム間に広い間隙が存在するユークロマチンとなっている状況です。この状態では一部のクロマチンでのみ転写が可能になっています。分化というのは特定の遺伝子しか転写されないというのとほぼ同義なので、図1Bの状態は合理的です。分化した細胞は通常細胞分裂しないか、しても長い間隔をおいて分裂するという状態なので、DNAの複製についてはあまり考慮する必要はありません。どのようなメカニズムでヘテロクロマチンが核膜の内側に結合するかは現在活発に研究が行われています(1)。

A

ヌクレオソームを構成する4種のヒストンは、そのポリペプチド鎖がC末からN末まできっちりヌクレオソーム内に収納されているわけではなく、一部は「しっぽ」のようにヌクレオソーム外にはみ出しています(図2)。ヌクレオソームはポリペプチド鎖が折りたたまれた上に、まわりにDNAが巻き付いているので、アミノ酸を修飾する酵素が非常にアクセスしにくい状態であるのに比べ、ヌクレオソーム外にはみ出している部分は修飾酵素が容易にアプローチできそうです。実際図2に示すような、様々な修飾が行われていることがわかっています。

A_2


このヒストンの「しっぽ」がどのように修飾されるかによって、クロマチンの存在状態、DNA複製のタイミング、アクセスできる転写複合体などが選別されます。つまりDNAやクロマチンにアクセスしたいタンパク質群は、ヒストンの状況によって許可・却下が決まることから、そのヒストンの修飾状況を「ヒストンコード」と呼ぶことがあります(2)。提唱者の定義によると 「We propose that distinct histone modifications, on one or more tails, act sequentially or in combination to form a 'histone code' that is, read by other proteins to bring about distinct downstream events」 とのことです。

ではそれぞれの修飾について個別に見ていきましょう。まずメチル化ですが、メチル化されるアミノ酸残基はリジンとアルギニンで、それぞれ mono, di, tri と3種類の修飾が存在します(図3)。メチル基を供給するのはSアデノシルメチオニンで、転移酵素によってヒストンに転移します(図3)。ヒストンからメチル基をはずす酵素(ヒストンデメチラーゼ)も知られています(3)。ヒストンのメチル化はクロマチンの凝集や転写の活性化および不活性化を制御します。DNAの修復と複製の制御も行います(4)。また性決定にも関与しています(3)。X染色体の不活化の際には、DNAだけではなくヒストンH3がメチル化されていることが知られています(5)。

A_3


アルギニンの脱イミノ化反応(シトルリン化)は尿素回路などでもおなじみですが、ヒストンのアルギニン残基の脱イミノ化は核移行シグナルを持つPAD4(Peptidylarginine deiminase 4)によって実行されます。この化学修飾はヒストンのメチル化と転写制御に関して拮抗的に働くことがあるようです(6、7)。またこの修飾が著しく進むと、クロマチンの脱凝縮が行われることが示唆されています(8)。自己免疫疾患が持つ患者の抗体が、脱イミノ化されたタンパク質を攻撃することが知られています(6、9)。

A_4


ヒストンのアセチル化は、ヒストンの修飾のなかでもメジャーなものです。図2にみられるように、コアヒストン(H2A、H2B、H3、H4)のしっぽにはいずれも多くのリジン残基が存在しますが、ほとんどは側鎖のアセチル化(図5)が可能です。アセチル基を供給するのはアセチルCoAです(図5)。ヒストンアセチル化酵素(HAT)の作用によって、アセチル化が進行するとヒストンの塩基性が失われ、一般にDNAのリン酸との結合が弱くなってヒストンとDNAが解離し、転写が活性化されます。逆にヒストン脱アセチル化酵素(HDAC)の作用によって、ユークロマチンはヘテロクロマチンに移行し、転写は抑制されます(10、11、図5、図6)。

A_5


A_6

ヒストンのリン酸化は、セリン・スレオニン・チロシン残基の側鎖OHがヒストンキナーゼでリン酸化されることによって行われます(図7)。ヒストンH3のN末から10番目のセリンのリン酸化がM期における染色体凝縮にかかわっていることが知られています(12、13)。またDNAがダメージを受けた際にヒストンH2Aなどのリン酸化がおこり、このことがDNA修復開始のシグナルになると言われています(13)。単純に考えるとヒストンのリン酸化はヒストンの塩基性を消滅させる方向の変化なので、ヒストンとDNAの結合を弱めるので、例えばDNAの修復システムがアクセスするには有効かもしれませんが、染色体凝縮にどのようにかかわっているかは謎です。

最近ではヒストンのリン酸化が転写の制御に関わっているとか、ヒストンアセチル化・メチル化などのカスケードの起点になっているとかの報告もあるようです(13)。またH2AのバリアントであるH2AXのリン酸化がアポトーシスに関与しているとの報告もあります(14)。

A_7


最近注目されているヒストンの修飾反応にポリADPリボシル化があります。シャンボンらによって1966年に発見されましたが、その後京都大学の上田国寛のグループと国立がんセンターの三輪正直のグループを中心に、わが国において反応の全体像が明らかにされました(図8)。

A_9

この反応はNAD+を基質としてタンパク質のグルタミン酸あるいはアスパラギン酸側鎖のカルボキシル基に、NAD+からニコチン酸アミドを切り離してADP-リボースを結合し、さらに次々とADPリボースを添加してポリマーを形成するものです(15、図9)。ヒストンもその主要なターゲットになります(16、17)。反応はポリADPリボースポリメラーゼ(PARP)によって行われますが、別に分解酵素も存在するので、他のヒストン修飾と同様結果的に反応は可逆です。

他の修飾と異なりマイナスチャージのADP-リボースがポリマーとして添加される上に、鎖のブランチングまでおきるので、その影響は桁違いに大きいはずで、緊急のDNA修復や遺伝子発現に大きな影響を及ぼすと考えられます(18)。

A_10

このほかにもヒストンの修飾にはユビキチン化(19)などがありますが、その意義は不明なのでここまでにしておきます。

 

参照

1)Jennifer C Harr, Adriana Gonzalez-Sandoval, & Susan M Gasser, Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man.
EMBO Reports, vol. 17, pp. 139–155,  (2016)   DOI 10.15252/embr.201541809
http://embor.embopress.org/content/early/2016/01/20/embr.201541809

2)Strahl BD1, Allis CD., The language of covalent histone modifications., Nature., vol. 403 (6765), pp. 41-45., (2000)
http://www.gs.washington.edu/academics/courses/braun/55105/readings/strahl.pdf

3)S Kuroki, S Matoba, M Akiyoshi, Y Matsumura, H Miyachi, et al., Epigenetic Regulation of Mouse Sex Determination by the Histone Demethylase Jmjd1a., Science vol. 341 (6150): pp. 1106-1109. doi:10.1126/science.1239864. (2013)

4)Black JC, Van Rechem C, Whetstine JR.,  Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell vol. 48(4), pp. 491–507. (2012)

5)https://ja.wikipedia.org/wiki/X%E6%9F%93%E8%89%B2%E4%BD%93%E3%81%AE%E4%B8%8D%E6%B4%BB%E6%80%A7%E5%8C%96

6)有田恭平他 ヒストン修飾酵素 Peptidylarginine deiminase 4 (PAD4) の活性化とヒストン認識 PF NEWS vol. 42, no.2, pp. 16-22 (2006)

7)Wang Y. et al.,  Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. vol. 306, pp. 279–283 (2004)

8)Yanming Wang et al., Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation.,  J Cell Biol., vol. 184(2): pp. 205–213. (2009)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654299/

9)https://en.wikipedia.org/wiki/Citrullination

10)Tony Kouzarides, Chromatin modifications and their function., Cell. vol.128, pp. 693-705., (2007)
http://www.cell.com/cell/fulltext/S0092-8674(07)00184-5?_returnURL=http%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867407001845%3Fshowall%3Dtrue

11)Min-Hao Kuo, C. David Allis., Roles of histone acetyltransferases and deacetylases in gene regulation., BioEssays Vol. 20,  pp. 615–626 (1998)

12)中山潤一 ヒストン修飾酵素 http://www.nsc.nagoya-cu.ac.jp/~jnakayam/_src/sc744/pubj03.pdf#search=%27%E3%83%92%E3%82%B9%E3%83%88%E3%83%B3%E3%82%AD%E3%83%8A%E3%83%BC%E3%82%BC%27

13)Dorine Rossetto, Nikita Avvakumov, Jacques Cote., Histone phosphorylation. A chromatin modification involved in diverse nuclear events. Epigenetics vol. 7, no.10, pp. 1098-1108 (2012)
http://www.tandfonline.com/doi/abs/10.4161/epi.21975

14)Peter J. Cook et al., Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions., Nature vol. 458, pp. 591–596 (2009) | doi:10.1038/nature07849
http://www.nature.com/nature/journal/v458/n7238/abs/nature07849_ja.html?lang=ja&foxtrotcallback=true

15)https://en.wikipedia.org/wiki/Poly_(ADP-ribose)_polymerase

16)Morioka K., Tanaka K., Ono T., Poly(ADP-ribose) and differentiation of Friend leukemia cells.,  J. Biochem., vol. 88, pp. 517-524 (1980)
https://www.jstage.jst.go.jp/article/biochemistry1922/88/2/88_2_517/_pdf

17)Morioka K., Tanaka K., Ono T., Acceptors of poly(ADP-ribosylation) in differentiation inducer-treated and untreated Friend erythroleukemia cells., Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, Vol. 699, Issue 3, pp. 255-263 (1982)
http://www.sciencedirect.com/science/article/pii/0167478182901154

18)Rebecca Gupte, Ziying Liu, and W. Lee Kraus., PARPs and ADP-ribosylation: recentadvances linking molecular functionsto biological outcomes., GENES & DEVELOPMENT vol. 3, pp. 101–126 (2017)
http://genesdev.cshlp.org/content/31/2/101

19)伊藤敬 ヒストンH2A のユビキチン化と遺伝子転写抑制 生化学 第82巻第3号,pp.232-236,(2010)
http://www.jbsoc.or.jp/seika/wp-content/uploads/2013/10/82-03-08.pdf#search=%27%E3%83%92%E3%82%B9%E3%83%88%E3%83%B3%E3%81%AE%E3%83%A6%E3%83%93%E3%82%AD%E3%83%81%E3%83%B3%E5%8C%96%27

| | コメント (0) | トラックバック (0)

より以前の記事一覧