« 2019年3月 | トップページ | 2019年5月 »

2019年4月30日 (火)

やぶにらみ生物論125: セロトニン

セロトニン(5-ヒドロキシトリプタミン、5-HTという略称を用いることもあります)は生理活性アミンの1種で、トリプトファンから5-ハイドロキシトリプトファンを経て生合成されます(図1)。

A_19

血清中に筋肉を収縮させる活性のあるホルモン様因子が存在することは20世紀初頭から知られていました。その第一候補はアドレナリンでしたが、その因子と異なりアドレナリンは腸の平滑筋は弛緩させました。オコナーはこの因子が血漿では検出できないことから、血液凝固の過程で血小板から血清中に漏れ出したと考えました(1)。

血液凝固がおこるということは負傷したということです。負傷すると血管の平滑筋が収縮して出血を防ぐというのは、生命維持のために重要なメカニズムです。

このホルモン様因子の分子的実体はなかなか解明されませんでしたが、20世紀半ばになってようやくラポルト(図2)らによって、謎の血清因子がセロトニンであることが明らかにされました(2、3)。ラポルトらは900リットルのウシ血清から2~3mgの因子結晶を得て、構造を解明することができました。そしてエルスパメル(図2)らのグループがエンテラミンと呼んでいた胃粘膜由来の平滑筋収縮因子が同じ物であることがわかりました(4)。

そして1953年にはウェルシュ(写真がみつかりません)らがセロトニンが神経伝達物質であることを示唆する論文を発表しています(5、6)。彼らは二枚貝のガングリオン(神経節)が心臓の拍動を制御するに際して、アセチルコリンが拍動抑制、セロトニンが拍動促進という役割を持っていると考えました。その後ドーパミンの記事で述べたファルク-ヒラープの方法(7)によってセロトニンも可視化され、神経細胞での存在が確認されました。

A_20

セロトニンの受容体については、図3に示したような7種類の分子の存在が知られています。このうち6種類は7回膜貫通型3量体Gタンパク質共役型受容体(GPCR=GTP-binding protein-coupled receptor )ですが、5-HT3だけはイオンチャネル型です(8)。

A_21

代表的なセロトニン受容体の立体構造を図4に示しました。左はGPCR型の5-HT1B(9)、右はイオンチャネル型の5-HT3(10)です。GPCR型の機能は例によって結合しているGタンパク質の種類によって異なります。図3および図5にリストアップしておきました。イオンチャネル型はセロトニンが結合することによって、受容体を持つ細胞が脱分極を起こします。

A_18

ここではそれぞれのセロトニン受容体の詳細な局在や機能についてまだ深入りしませんが、概略は図5に示しました(11)。血管・消化管・中枢神経系がこの受容体の主な活動場所です。

A_22

モノアミン系神経伝達因子のトランスポーターは、ドーパミンとノルアドレナリンについてはそれぞれについて特異性が低いトランスポーターがあり、セロトニンについては特異性が高い専用のトランスポーターがあります。これらのトランスポーターによって、外界のモノアミンは細胞内のシナプス小胞に取り込まれます。シナプス間隙の神経伝達因子を取り込むと、リサイクルと伝達の停止というふたつの意味を持つことになります。

キルティらによって最初にドーパミントランスポーター遺伝子のクローニングが行なわれ、その構造が研究されました(12、13)。他のトランスポーターと同様、膜12回貫通型のタンパク質で、N末・C末ともに細胞内にあります。細胞膜に埋め込まれていないループが細胞外にも細胞内にも複数あるようです(図6)。

B

モノアミンはナトリウム・カリウム・塩素などのイオンと共にトランスポーターがつくる膜内の小室に取り込まれ、外界側のドアを閉めた後で細胞内へのドアを開けて細胞内に移動するようです(14、図7)。

A_24

セロトニンの作用についてもうひとり忘れてはならないパイオニアがいます。それはベティー・トゥワログで(図8)、彼女は前記のウェルシュの研究室で学位をとったのですが、不可解なことにその研究をウェルシュとは別々の論文に書いて発表しています(15、16)。これはおそらくトゥワログの論文が投稿から発表までに2年もかかった(17)ことが関係しているのでしょう。編集部が受理する自信がなかったためにこのようなことになったと思われます(17)。

その内容は、ホンビノスガイ(もともとは北アメリカの大西洋側にしかいませんでしたが、現在は世界中に広がり東京湾にもいるそうです、図8)の神経による心臓の調節に関する物もので、この2枚貝の神経は心臓の鼓動を調節するためにアセチルコリンを放出しますが、アセチルコリンは鼓動の頻度や強度を抑制する働きがあります。しかしアセチルコリンアンタゴニストあるいはセロトニンは鼓動の頻度や強度を強める働きがあることを彼らは示しました。トゥワログとページはさらに哺乳類にもセロトニンが存在し、同様な働きを持つことを報告しました(18、19)。

A_25

ヒトでセロトニンが欠乏するとどんなことが起こるのでしょうか? 安原こどもクリニックのサイトをみると次のような病状が発生するそうです(20)。

#すぐキレル
#摂食障害
#過食
#拒食
#パニック障害
# うつ
#睡眠障害(眠れない)
#寝覚めがはっきりしない
#筋収縮障害

ここで注意すべきは、セロトニンはメラトニンというホルモンの前駆体でもあるので(図9)、セロトニンが欠乏するとメラトニンも欠乏します。したがってセロトニン欠乏症なのかメラトニン欠乏症なのかは慎重に検討する必要があります。これらについてはおいおい調べていくことにします。

A_26

 

参照

1)O’Connor JM: Uber den Adrenalingehalt des Blutes. Arch Exp Pathol Pharmakol (founding name of “Naunyn-Schmiederberg’s Arch Pharmacol”), vol.67, pp.195-232.(1912)

2)Rapport MM, Green AA, Page IH: Crystalline serotonin., Science,vol.108, pp.329-330.(1948)

3)Rapport MM: Serum vasoconstrictor (serotonin). V. The presence of creatinine in the complex: a proposed structure of the vasoconstrictor principle. J Biol Chem,
vol.180, pp.961-969.(1949)

4)Erspamer V, Asero B: Identification of enteramine, the specific hormone of the enterochromaffin cell system, as5-hydroxytryptamine. Nature, vol.169, pp.800-801. (1952)

5)Welsh JH: Excitation of the heart of Venus mercenaria.Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol,vol.219, pp.23-29.(1953)

6)Welsh JH, Taub R: The action of acetylcholine antagonists on the heart of Venus mercenaria. Br J PharmacolChemother, vol.8, pp.327-333.(1953)

7)Falck B, Hillarp N. A, Thieme G, Torp A: Fluorescence of catechol amines and related compounds condensed with formaldehyde. J Histochem Cytochem,vol.10,pp.348-354.(1962)

8)Peroutka SJ, Snyder SH: Multiple serotonin receptors:differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol, vol.16, pp.687-699.(1979)

9)S. Jähnichen,  https://en.wikipedia.org/wiki/5-HT_receptor

10)G Hassaine et al.,  Protein Data Bank,  https://www.rcsb.org/structure/4PIR

11)日本血栓止血学会用語集 https://www.jsth.org/glossary_detail/?id=263

12)Kilty JE, Lorang D, Amara SG. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science. 1991; 254(5031):578–579. [PubMed: 1948035]

13)https://en.wikipedia.org/wiki/Monoamine_transporter

14)Jacob Eriksen,  PhD thesis - Københavns Universitet  (2009)

15)Welsh JH, Taub R: The action of acetylcholine antagonists on the heart of Venus mercenaria. Br J Pharmacol Chemother, vol. 8, pp. 327–333.,  (1953)

16)Twarog BM: Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J Cell Physiol, vol. 44, pp. 141–163., (1954)

17)Patricia Mack Whitaker-Azmitia., The Discovery of Serotonin and its Role in Neuroscience., Neuropsychopharmacology., vol. 21, no. 2S,
(1999)
https://www.nature.com/articles/1395355

18)Twarog BM, Page IH: Serotonin content of some mammalian tissues and urine and a method for its determination., Am J Physiol, vol. 175, pp. 157–161., (1953)

19)Manfred Göthert., Serotonin discovery and stepwise disclosure of 5-HT receptor complexity over four decades. Part I. General background and discovery ofserotonin as a basis for 5-HT receptor identification., Pharmacological Reports, vol.65, pp.771-786 (2013)
http://www.if-pan.krakow.pl/pjp/pdf/2013/4_771.pdf

20)http://www.y-c-c.jp/drbear/?p=41

 

 

| | コメント (0)

2019年4月28日 (日)

バルサ 2018~2019シーズンのリーガを制覇

1_9

5月を待たずにバルサはリーガ優勝を確定しました。

金賞: リオネル・メッシ 文句なし

銀賞: マルク=アンドレ・テア・シュテーゲン スーパセーヴはバルサを救いました

特別賞: クリスチャーノ・ロナウド 彼が去り、レアル・マドリーは死んだ

次のターゲットはもちろんリバポー

| | コメント (0)

2019年4月27日 (土)

大野-都響 ラフマニノフ「交響的舞曲」@サントリーホール2019・4・26

Img_1

冬に逆戻りしたような寒々とした霧雨の日。今日の都響プログラムに合わせたような天気です。
指揮者は大野さん、コンマスは四方さん、サイドはマキロンです。7割くらいの入りです。後半は8~9割になったかな。平日はまあこんなもんでしょう。

シベリウスの「交響曲第6番」は意外にもリハ不足でうまくいってない部分がありましたし、どんな演奏がしたいのかよくわからない部分もありました。幻想交響曲で燃え尽きたのかなと思いましたが、後半の交響的舞曲(ラフマニノフ)で一気に盛り返しました。

R.シュトラウスの「メタモルフォーゼン」、ラヴェルの「ラ・ヴァルス」、ラフマニノフの「交響的舞曲」などはいずれも世界大戦の残虐と破壊を背景に、作曲者本来の芸風を離れた特異でシリアスな音楽です。これらは戦争経験者でなければ深く理解することはできない作品群だと思いますが、私は私なりに彼らの世界に没入します。

交響的舞曲は聴き進むにつれて、軍の行進、人々のうめきと叫び、爆弾の炸裂、恐怖と嘆き、死と破壊、鎮魂と祈りで埋め尽くされてくる、暗く激しい異様な音楽で、ラフマニノフらしい甘美なメロディーなどどこにもありません。大野-都響は全力で爆演です。この演奏会に参加した楽団員・エキストラ全員が力を出し切った感がありました。このような演奏をしてくれると、都響は本当に生きていくよすがになります。大野-都響に感謝。

こんな音楽です。
https://www.youtube.com/watch?v=aejZf3Y75JM

| | コメント (0)

2019年4月24日 (水)

Big Question: つるうちはな「一緒にいようよ」

つるうちはな「一緒にいようよ」
https://www.youtube.com/watch?v=HSA_AxEK3CQ

これはただプライベートを自撮りして YouTube に出したものではなく、オフィシャルMVです。ですからもちろんCDは販売されています。
こちら

出演しているのは本物のご主人だそうで、そこから想像されるのは、歌の内容が完全にプライベートと一致しているということです。

こんなのアリ???  ちょっと怖い。

つるうちはなさんが天才であることは認めますが・・・・・。

私小説を書いている小説家は、ペンネームを使って、サイン会などをやらなければ読者と接触がないわけですから、その小説の世界そのものが架空を装うことすらできますが、ライヴを主要な活動とするミュージシャンはそうはいかないでしょう。私小説シンガーソングライターがいないのは当然ですが、それをやりきったとすればすごいことです。私は作品の中にプライベートが垣間見えるというくらいが芸術のあるべき姿だと思いますし、多くの人はそう思っているのではないでしょうか。

熊木杏里のように旦那のことはかけらも話題にしないというのも、それはそれで物議を醸すかもしれませんが。

つるうちはな
オフィシャルウェブサイト:https://tsuruuchihana.hanatopops.com/

 

| | コメント (0)

2019年4月21日 (日)

大野-都響 ベルリオーズ「幻想交響曲」@東京芸術劇場2019/4/20

Img

気持ちの良い晴天の土曜日。今シーズン最初の都響定期で池袋にでかけました。マエストロ大野の指揮でコンマスは矢部ちゃん。雨男なのによく晴れにしてくれました。サイドはゆづき。昨年入団したばかりのヴィオラの西さんが、2列目で弾いているのが目立ちました。

ソリストはルガンスキーで、今シーズン最初の曲はグリーグのピアノコンチェルト。ルガンスキーは適度にやわらかい音色で、人間味の濃いロマンティックな演奏です。都響のさわやかなサポートもすばらしく、ハートフェルトなコンチェルトでした。満場の喝采に答えてのアンコールはメンデルスゾーンの無言歌からop.85-4 「悲歌」。

休憩後の幻想交響曲はおそらくマエストロ大野の18番らしく、冒頭から怖いくらい整頓された弦楽アンサンブルで背筋がゾクゾクしました。大植イングリッシュホルンと広田オーボエ(バンダ)の応答は聴き所です。私は見てなかったのですが、公開リハーサルではドアの開け方をいろいろトライしていたそうです。そうした細かい努力もあってか、「野の風景」はとてもいい雰囲気でした。「断頭台への行進」も迫力満点。そして圧巻は「ワルプルギスの夜の夢」。まるで蝙蝠の大群が押し寄せるような冒頭から、ホラーと狂乱の宴を満喫しました。

今日の演奏はロリン・マゼール指揮、バイエルン放送交響楽団の名演(1)にも匹敵する超絶の演奏だったと思います。マイクが林立していたので録音していたのでしょう。今シーズンもやってくれますね 都響!

1) https://www.youtube.com/watch?v=dhwfOeJNBlM

 

 

| | コメント (0)

2019年4月19日 (金)

クリスパー/キャス9 遺伝子編集への道

遺伝子編集が最近巷で話題になっているようなので、2年半ほど前に書いた記事を再掲することにしました。

遺伝病は遺伝子のたった一組の塩基対の異常によっても発生し、それが原因で落命するということもあり得ます。有名なのは鎌形赤血球貧血症で、一対の塩基対の異常によってヘモグロビンベータのグルタミン酸がバリンに代わり、ヘモグロビンの機能が低下して貧血になります。どの遺伝子のどの塩基対が変異をきたしても病気になる可能性があるので、遺伝病のバラエティは無数にあります。

これらの遺伝子を正常にもどして病気を治療するというのは、分子生物学者にとってのひとつの夢でした。当初考えられたのは、レトロウィルスベクターを使って正常な遺伝子を細胞に注入するというやり方でした。

しかしそこで予想もしなかった事態が発生しました。まず1999年にゲルシンガー事件というのがおこりました。患者のゲルシンガー氏の免疫系がベクターに異常に強い反応を起こして、患者が死亡してしまったのです。2000年代のはじめには、X連鎖重症複合型免疫不全症(SCID-X1)と呼ばれる疾患に対して、20人の小児患者が遺伝子治療を受けましたが、そのうちの5人が白血病を発症し、1人が死亡するという事件が起きました。この原因は患者のゲノムに挿入された治療用遺伝子が「がん遺伝子」を活性化したためと考えられています(1、2)。現在ではレトロウィルスベクターのかわりに、より安全性を担保されたレンチウィルスベクターが用いられ、ウィルスベクターによる遺伝子治療が再出発しています(3)

しかしこのようなウィルスベクターによる治療にはいつくか問題点があります。ひとつは遺伝子が挿入される場所を指定できないので、何が起こるか判らないという怖さがあること。いまひとつはハンチントン病のように、変異遺伝子が生成する異常タンパク質が、正常なタンパク質の作用を妨害するような場合には無効であることです(4)。したがって、そのようなウィルスベクターによる治療に危惧を抱いていたグループの中では、前稿でとりあげたカペッキやスミティーズの相同遺伝子組み換え技術によって、異常遺伝子を正常遺伝子に組み換えるという可能性を追求しようという機運がひろがっていました。

そもそも相同遺伝子組み換えというのは、真核生物では主に減数分裂の時におこる現象ですが、どのようなメカニズムで行なわれるのでしょうか? このそもそも論に取り組んだのがジャック・ショスタクです。彼はテロメア・テロメラーゼ関連でノーベル賞を受賞しましたが、それ以外の仕事でもその天才ぶりを遺憾なく発揮しました。

DNAは常に放射線・紫外線・化学物質などにさらされており、日常的に損傷を受けています。損傷のタイプは大きく分けて二つあり、ひとつは1本鎖の切断で、これは修復機構が数多く知られています(5、6、図1)。いまひとつは2本鎖の切断で、1本鎖の切断の場合と異なり、断点でDNAが生き別れてしまうおそれがあるという生命にとって極めて危険な状況が発生します(図1)。しかし生命はあえて損傷時以外にも、減数分裂時には染色体の組み換えを行なって、遺伝子のシャフリングを行なっています。そのためには2本鎖の切断と修復が必要です(図1)。

Image1

ショスタクらは1983年に、2本鎖切断を修復する機構のモデル(仮説)を発表しました(7、図2)。今見てみると非常に味わい深いモデルだと思いますが、発表された当時はあまりに都合の良いことを単純につなぎ合わせたような気がして、信じ難い感じがしました。多くの研究者が当時はそう思っていたのではないでしょうか。しかし現在では着々とその正しさが証明されつつあります(8)。2本鎖の断点から、まず1本鎖が断点の5’側からエクソヌクレアーゼによってかじられ(タンパク質がとりつくスペースを空けるためでしょう)、かじられなかったもう1本の鎖にRAD51(図2の赤丸)というタンパク質がとりつきます。これとRAD54(図2のオレンジ楕円)などが協力して相同染色体の対応部位をさがしてとりつきます。ここで相同染色体にある塩基配列を利用して図2のような修復を行ないます。結果的に染色体の組み換えが行なわれていることに注意して下さい。修復に利用された相同染色体側から見れば、染色体の一部が切り取られて移動しただけですが、2本鎖切断を受けた側の染色体では、極めて複雑なプロセスがあることがわかります。このプロセスの全貌はまだ解明されていません。

重要なのは、生物が本来持っている遺伝子組み換え機構を発動するには、DNA2本鎖切断、相同染色体、DNA加工酵素、相同部位を探すために必要なタンパク質、の4者が必要だということです。

Image2

DNAの2本鎖修復が、切断を受けたDNA以外のDNAを利用して行なわれることの証拠をはじめて示したのはマリア・ジャシンらでした。彼女らは18塩基配列を認識して2本鎖DNAを切断する特殊なエンドヌクレアーゼをマウスに導入し(マウスにはこの18塩基配列がないため、ずっと発現していても何もおこらない)、18塩基配列をマウスゲノムに埋め込むとともに、この配列に相補的なDNA断片を供給すると、約10%の細胞が相同組み換えによってDNAを修復することができました(9)。

この記事の主役であるジェニファー・ダウドナはショスタクの研究室で博士号を得ているので、当然相同遺伝子組み換えには関心を持っていたはずですが、ポストドクはコロラド大学のトム・チェックの研究室でリボザイムの研究を行なっていました。しかし彼女が就職してから最初に取り組んだのは、「細菌の免疫機構」というテーマでした。

参照(4)によると、2006年のある日会ったこともないジリアン・バンフィールド(ジル)という研究者から電話がかかってきて、共同研究のオファーがあったそうです。よくわけがわからなかったそうですが、ダウドナはその熱意にほだされて会って話を聴くことにしました。ジルはあらゆる細菌DNAが規則的にとびとびに並んだクラスター状の回文反復配列を持っており、その反復配列の間に異なる配列がはさまれているという話をしました(図3、灰色部が反復配列、赤・青・緑がそれぞれ異なる配列)。

この回文反復配列は、もともと別の大腸菌遺伝子の研究をしていた石野良純がその隣接領域に発見して報告していたものです(10、図3の赤枠の中)。当時はこの配列の重要性に誰も気づきませんでしたが、かなり後になって、この配列が多くの細菌・古細菌にみられるということをフランシスコ・モヒカらが報告しました(11)。ウィキペディアによれば、配列決定された原核生物のうち真正細菌の4割と古細菌の9割に見出されているそうです。この配列は2002年にルート・ヤンセンらによってCRISPR(クリスパー=Clustered Regularly Interspersed Short Palindromic Repeats)と命名され、この近傍にはCAS遺伝子群(CRISPR-associated genes)が存在することも明らかになりました(12)。

Image3

ダウドナがジルに会う少し前に、アレグザンダー・ボロティンらが、反復配列にはさまれた赤・青・緑の領域がウィルスの塩基配列とホモロジーがあることを発表していました(13)。さらにジルはダウドナにマカロヴァらの最新の論文を見せ、そこにはクリスパーが細菌の免疫機構のひとつであることが示唆されていました(14)。 ダウドナは自分がそれまで研究していたRNA干渉(mRNAの相補配列をもつRNAが転写を制御する機構)が、原核生物の免疫に関与しているという話に驚愕し、ただちに食いつきました(4)。ダウドナの本には、海中の細菌の40%が毎日ウィルス感染によって死んでいると書いてあります。細菌にはすごい増殖能力があるのでウィルス感染なんて「へ」でもないというわけにはいかないようです。

ちょうどその頃、ロドルフ・バランガウらはウィルス抵抗性を獲得した細菌のクリスパーを調べて、新規にそのウィルスのゲノム配列がスペーサー部にコピーされていることを発見し、クリスパーが細菌の獲得免疫をになう機構であることを証明しました(15)。この免疫機構が素晴らしいのは、いったん獲得するとそれが子孫にも受け継がれるという点です。

2008年になりスタン・ブロウンズらは、まずクリスパー全体が転写され、次に転写されたRNAがリピート部分でRNA分解酵素によって切断されて、各スペーサー部分と相補的なRNA分子が生成されることを示しました(図4、16)。この短いRNAはウィルスゲノムと相補的な構造をもっているため、ウィルスを不活化することができると考えられます。しかしそのメカニズムはそのようなものなのでしょうか。最近の研究ではこのメカニズムは大きくわけて大腸菌などに適用される I 型と レンサ球菌などに適用される II型があることがわかっています。

Image4

ダウドナの研究室では2011年頃までは主に特異性の低いクリスパー I 型について研究していたのですが、プエルトリコのカフェで偶然エマニュエル・シャルパンティエと出会って共同研究を始めた頃から、特異性の高い II 型の研究に重心を移しました(4)。エマニュエルは II 型クリスパーシステムを持つレンサ球菌のCAS9を研究していて、この遺伝子の突然変異によって免疫機構が失われることをみつけていました。ダウドナ研ではエマニュエルの研究室の他各地から人材を集めてCAS9の機能分析を行ないました。中心となったのはダウドナ研のマーティン・イーネック(Martin Jinek) とシャルパンディエ研の クシシュトフ・チリンスキ(Krzysztof Chylinski)です(図5)。二人ともポーランド語を話せたので意思疎通はうまくいったようです。

当初はクリスパーRNAとCAS9でファージDNAを切断できると思っていたわけですが、実はそれ以外に tracrRNA(trans-activated RNA)というもうひとつの役者が必要であることがわかりました。このRNAはクリスパーRNAと相補配列をもち、ハイブリッドを形成してCAS9を分解すべきDNAの特定部位に導きます。PAM配列という生物種や関連分子種によって異なる特異配列が誘導に介在しています。CAS9がDNAの2本鎖をこじ開けると、クリスパーRNAがその片側と結合します。その状態でCAS9のふたつのヌクレアーゼサイトを同時に使って2本鎖の両方を同時に切断します(17、図5)。

ダウドナ研で tracrRNAとクリスパーRNA(crRNA)を人工RNAで接続し1分子(キメラ分子)に統合してもCAS9を切断部位に誘導できることが示され、図5のようにクリスパーをツールとして用いるときは、このようなキメラ分子を使うのが便利ということになりました(図5)。この人工キメラ分子はsgRNA(シングルガイドRNA)と名付けられました。

Image5

図6はクリスパーの基礎研究を主導した3人の女性研究者です。彼女たちは研究者としてのみならずマネージャーとしても一流で、多額の研究費を得て大規模な研究室を維持し切り盛りしています。ちょっとバークレイのダウドナ研のサイトをのぞいてみましたが(18)、主要メンバーはほとんど中国系で驚かされます。まもなくノーベル賞を受賞しようかという研究室にもかかわらず、ポストドク、学生のなかに日本人がみあたらないのは残念です。CAS-クリスパーシステムのもう少し専門的または詳しい日本語解説をみたい方は(19)などを参照されるとよいでしょう。

Image6

CAS-クリスパーシステム(sgRNA+Cas)と挿入用のDNAを使えば、正確な位置にDNAを挿入することができます(図7)。といっても遺伝子をまるごと挿入できるわけではありません。ダウドナはその著書のなかで「CRISPRは私たちに生命の分子そのものを思うままに書き換える手段を与え」と述べていますが、それはちょっと大げさです。たとえば2種類のsgRNAを用いてひとつの遺伝子を両端で切断してとりはずし、別の遺伝子と入れ換えるなどということはできません。ただ遺伝子に突然変異を導入する効率は飛躍的に進歩しました。

Image7

CAS-クリスパーシステム(sgRNA+Cas)を使ってDNAを切断すると、2本鎖切断がおきるので、鋳型に依存しない通常不正確な修復機構によってDNAがつながります。この結果しばしば遺伝情報のフレームシフト(横ずれ)によってコードが意味をなさなくなり、遺伝子の機能が失われます(図8)。

Image8

マウスの受精卵にCAS-クリスパーシステム(sgRNA+Cas)を注入し、胚盤胞まで培養して仮親に育てさせると(図9)、狙った遺伝子が図8のような機構で無効化し、ノックアウトマウスを作成できます。また同時にオリゴDNAを注入すると、そのオリゴDNAをゲノムDNAにとりこんだ動物ができます。たとえば突然変異を持つ動物を作成できます(20、図7)。

Image9

ある遺伝子に変異を導入して病原菌のターゲットにならないように遺伝子を改変するというのは、CAS-クリスパーシステムの得意とするところです。うどんこ病に抵抗性のコムギなどは大きな成功でしょう(21)。このシステムでは狙った特定の位置に正確に変異を導入できるので、X線・ガンマ線・化学物質などを使ってランダムに導入された変異などとはわけが違う、素性のはっきりした品種改良であり、これは私達が慎重さを確保した上で受け入れるべきものでしょう。

ダウドナの本(4)は非常によくまとめられていて、著者の頭の良さをうかがわせますが、同時にクリスパーのプロパガンダの本でもあります。クリスパー/キャス9はもともとウィルスのDNAを破壊するためのシステムであり、特定の配列を認識してDNAを切断することはできますが、これを遺伝子編集というのはかなりおおげさな表現だと思います。編集と言うからには削除、追加、入れ替えが自在にできなければいけませんが、クリスパー/キャス9は遺伝子を無効化するのは得意ですが、追加や入れ替えはDMA2本鎖切断修復という極めて不完全なシステムに依存するため、まだまだ「編集」というにはほど遠い状況です。

クリスパーシステムが制限酵素のシステムと違うのは、ひとつはウィルスのDNA配列を記憶しておけるということ。もうひとつは制限酵素よりはるかに長い配列(20塩基)を認識できるので、自分のDNAを間違って切断する心配はない(したがってメチル化による保護は不要)ということです。

クリスパーシステムを用いた遺伝子治療を行なうには、プラスミドかウィルスにCAS-クリスパーを潜入させて、標的になる細胞にとりこませなければなりません。受精卵は大きいのでマイクロインジェクションで注入できますが、体細胞にはこのやり方は向いていません。このあたりがなかなか難しいところです。

参照

1)免疫不全症の遺伝子治療 AASJ
http://aasj.jp/news/watch/2281

2)遺伝子治療の現状と課題 PMDA科学委員会
https://www.pmda.go.jp/files/000156275.pdf

3)遺伝子治療の再来 北青山Dクリニック がん遺伝子治療センター
https://cancergenetherapy-dclinic.info/knowledge/treatment/457/

4)ジェニファー・ダウドナ、サミュエル・スターンバーグ著 櫻井裕子訳 「クリスパー 究極の遺伝子編集技術の発見」文藝春秋社(2017)

5)http://morph.way-nifty.com/grey/2016/11/post-4728.html

6)http://morph.way-nifty.com/grey/2016/12/post-1ebc.html

7)Jack W. Szostak , Terry L. Orr-Weaver , Rodney J. Rothstein , Franklin W.
Stahl., The double-strand-break repair model for recombination., Cell Vol. 33,
Issue 1,  pp. 25-35 (1983)
https://www.sciencedirect.com/science/article/pii/0092867483903318

8)黒沢綾、足立典隆 ヒト細胞における DNA 二本鎖切断の修復 Isotope News  2014 年 5 月号 No.721、 pp.
8-14
https://www.jrias.or.jp/books/pdf/201405_TENBO_KUROSAWA_ADACHI.pdf#search=%27%E9%BB%92%E6%B2%A2%E7%B6%BE%E3%80%81%E8%B6%B3%E7%AB%8B%E5%85%B8%E9%9A%86%27

9)Philippe Rouet, Fatima Smih and Maria Jasin., Expression of a Site-Specific
Endonuclease Stimulates Homologous Recombination in Mammalian Cells., Proc.
NAS., Vol. 91, No. 13, pp. 6064-6068 (1994)
https://www.jstor.org/stable/2365114

10)Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., and Nakata, A. (1987)
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase
isozyme conversion in Escherichia coli, and identification of the gene product.
J. Bacteriol. 169, 5429-5433.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC213968/pdf/jbacter00202-0107.pdf

11)Francisco J. M. Mojica, Cesar Díez-Villaseñor, Elena Soria, Guadalupe
Juez., Biological significance of a family of regularly spaced repeats in the
genomes of Archaea, Bacteria and mitochondria., Molec. Microbiol., vol. 36,
Issue 1, pp. 244–246 (2000)
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2958.2000.01838.x/full

12)Jansen R, Embden JD, Gaastra W, Schouls LM.,  “Identification of genes
that are associated with DNA repeats in prokaryotes”. Mol Microbiol vol. 43 (6):
pp. 1565–1575. (2002) doi:10.1046/j.1365-2958.2002.02839.x. PMID 11952905

13)Bolotin A, Quinquis B, Sorokin A, Ehrlich SD., Clustered regularly
interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal
origin., Microbiology. vol. 151(Pt 8): pp. 2551-2261. (2005)
https://www.ncbi.nlm.nih.gov/pubmed/16079334

14)Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV., A putative
RNA-interference-based immune system in prokaryotes: computational analysis of
the predicted enzymatic machinery, functional analogies with eukaryotic RNAi,
and hypothetical mechanisms of action.,  Biology Direct, 1:7, (2006) 
doi:10.1186/1745-6150-1-7
https://www.ncbi.nlm.nih.gov/pubmed/16545108

15)Rodolphe Barrangou et al., CRISPR Provides Acquired Resistance Against
Viruses in Prokaryotes., Science vol. 315, Issue 5819, pp. 1709-1712
(2007)
DOI: 10.1126/science.1138140
http://science.sciencemag.org/content/315/5819/1709.long

16)Brouns SJ et al., Small CRISPR RNAs guide antiviral defense in
prokaryotes., Science. vol. 321 (5891): pp. 960-964. (2008)  doi:
10.1126/science.1159689.
https://www.ncbi.nlm.nih.gov/pubmed/18703739

17)Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E., A
programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.,

Science vol. 337(6096):  pp. 816-821. (2012)  doi: 10.1126/science.1225829.
Epub 2012 Jun 28.

18)http://rna.berkeley.edu/people.html

19)新海暁男  CRISPR-Casシステムの構造と機能 生物物理 vol. 54(5),pp. 247-252(2014)
https://www.jstage.jst.go.jp/article/biophys/54/5/54_247/_pdf

20)H Wang et al., One step generation of mice carrying mutations in multiple
genes by CRISPR/Cas-mediated genome engineering., Cell vol. 153 pp. 910-918
(2013)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969854/

21)Yanpeng Wang et al., Simultaneous editing of three homoeoalleles in
hexaploid bread wheat confers heritable resistance  to powdery mildew., Nature
Biotechnology, vol. 32, pp. 947-952  (2014 ) DOI:
10.1038/nbt.2969

| | コメント (0)

2019年4月17日 (水)

プリンターの死

Img_3028

Canon PIXUS MP980 というプリンター(写真)を10年以上使ってきましたが、ついに6C10という死の宣告が出て、動かなくなってしまいました。純正インクを全部セットしたばかりで、昨日まで元気だったのにショックです。

https://kidukilife.net/pc/canon6c10/

世の中には執念深い人がいて、このメッセージ「6C10」を消去して、機械はまだ正常だと誤解させるプログラムを考えた人もいるようで試してみましたが、それでも6C10は消えず。諦めました。

修理には1万円以上かかるようなので、買い換えざるを得ないかもしれません。ここ何年かのプリンター製品は進化しているというより、使い勝手が悪くなって退化しているような気配もあるので困ります。

https://hiroshi10010269.com/4768/

https://review.kakaku.com/review/K0000941959/ReviewCD=1210720/

プリンターの葬儀には、市役所に電話して廃棄の日程を決める、コンビニで粗大ゴミチケット(500円)を購入して貼り付ける、指定のゴミ置き場に指定日・指定時間に出すなどの作業が必要で、やるしかありません。

パソコンもそろそろウィンドウズ10に移行しないといけませんし、ときどき落ちるようになったので心配の種はつきません。

| | コメント (0)

2019年4月14日 (日)

バルサ 新戦力でウェスカとドロー

Braugrana_67

ミッドウィークはオールドトラッフォードで、世界での人気をバルサと争うマンUと死闘。前半にスアレスのヘディングがショーの肩に当たってゴール。この有難い1点を守り切って、バルサはアウェイでの貴重な勝利を勝ち取りました。

テア・シュテーゲン、ピケ、ラングレのGK・CBは絶賛に値します。

https://www.youtube.com/watch?v=Sbxw5MqSdYw

そして土曜日のリーガは、カタルーニャのお隣のアラゴンでウェスカと対戦。マンUとの激戦で疲弊したバルサは控え選手総出場のシフトです。

試合は見るべきものもなく0:0のエンパテで終わりましたが、若い選手の顔とプレイが見られたのは新鮮でした。このなかから次世代のバルサを背負う選手が出てくることを期待します。

顔を覚えるための写真を貼っておきます。ムリージョはコロンビア、ヴィダルはチリ、ワゲはセネガルの選手です。その他スペイン・ドイツ・フランス・ブラジルの選手もいて国際色豊かでした。

アレニャーもこのメンバーでやるのははじめてとあって、全くまとめられません。個々の判断と技術で局面をつくっていくという原始的なサッカーでは、さすがに勝てませんでした。ただバルサにはめずらしい3バックを、初めてのメンバー(ウムティティ・ムリージョ・トディボ)で組んで0点に抑えたのはよかったかな。

New_1

トディボはとてもスポーツ選手とは思えない柔和な顔です。リキ・プッチは素晴らしいイケメンで、活躍すれば人気が出そう。デンベレはどうみてもコメディアンの顔。

 

| | コメント (0)

2019年4月11日 (木)

アグーチ (agouti) 遺伝子の機能

Photo_176

猫の縞模様を発現する遺伝子はいろいろ知られています。いわゆる縞模様を形成するマックレル遺伝子、アメショーのようなクラシックタビーの形成に関与する遺伝子、スポット(斑点)をつくる遺伝子、アビシニアンやソマリのような縞模様を部分化するティックド遺伝子、そして様々な縞模様に関与するアグーチ遺伝子などがあります。

アグーチの語源はアグーチという天竺ネズミの種の名前で、写真のようにフェオメラニン(橙)とユーメラニン(黒)のまだら模様の生物です。この動物の体毛は写真の右下の挿入図のように、1本の毛の一部ではフェオメラニン優勢、一部はユーメラニン優勢となっており、1本の毛がまだら模様になっています。猫を含む他の動物でも、アグーチ遺伝子型がAAまたはAaとなっている個体はこのような毛を持っています。うちのサラとミーナも持っています。

ところがこの写真の動物を見ても、ヒゲ(Vibrissa)はアグーチになっておらず黒一色です。これが不思議です。私はヒゲがアグーチになっている生物をみたことがありません。サラとミーナもヒゲは白一色でアグーチにはなっていません。猫はすべて白ヒゲかというとそんなことはなくて、私はペットショップで黒ヒゲの猫を見たことがあります。

確かにヒゲの毛根は、ヒトのようにその感覚毛としての機能を失っている種を除いて、すべて血液のプールのような個室に収納されていて、そこに神経が伸びてきて動きを感知するようにできているので、普通の毛根とは異なります。しかしその構造の違いとアグーチになるかならないかはさっぱり結びつきません。

アグーチ遺伝子は毛と脳で発現していることが知られていて、毛ではアグーチカラーを誘導する作用があることがわかっていますが、脳では何をしているのでしょうか? ヒトでは体毛ではアグーチ遺伝子の発現がなく、したがって縞模様のヒトは存在しませんが、脳では発現しているようで遺伝子がないわけではありません。

最近理研では野生に近いマウスを使って、クリスパー/キャス9という技術でアグーチ遺伝子を無効化すると、性格がおとなしくなり、まるで実験用マウスのようにヒトを避けないようになったという研究結果を得たそうです。さらに調べると、このマウスの中脳でドーパミントランスポーター遺伝子の発現が上昇していることがわかりました。これが性格の変化に関係しているようです。

http://www.riken.jp/pr/press/2017/20170214_3/

ただ猫の場合、アグーチ遺伝子が発現していない(aa)黒猫などが特に人なつこいという結果は得られていません。

https://sippo.asahi.com/article/11928822

アグーチ遺伝子がつくるタンパク質は研究用に販売されています。脳に注入すると食欲が増進するようです。

https://labchem-wako.fujifilm.com/jp/product/detail/339-43661.html

 

| | コメント (0)

2019年4月 8日 (月)

北総の桜 2019

Img_2972

北総の桜もようやく満開となりました。今年は1週間以上東京より遅い満開です。私達にとっては毎年のことですが、知らない人を案内すると歓声を上げたりするので、それなりに立派な並木道だと思います。上野の桜などに比べると、木が若いので勢いがあります。

ただあまり配慮なく、近接した位置に街灯を配置したため、桜で街灯が隠されるうえにライトアップ効果もゼロです。

私のフェイバリットである熊木杏里も自作の Love letter~桜~ という名曲をリリースしていますが、コブクロの「桜」のカバーも素晴らしいと思います。

熊木杏里 - 「桜」(コブクロ 「桜」 のカバー)
https://www.youtube.com/watch?v=NAnBxv8hJU0

熊木杏里 - Love letter ~桜~
https://www.youtube.com/watch?v=KNmNITPIJYE

あいみょんも底知れぬパワーで、「ハルノヒ」というバラードを歌う
https://www.youtube.com/watch?v=pfGI91CFtRg

昔北千住で草野球をやったことがあります。草野球といってもちゃんとユニフォームにスパイクで、めちゃくちゃに気合いを込めて。ただ荒川の河川敷がぐちゃぐちゃに湿っていて守りにくいのなんの。

 

| | コメント (0)

2019年4月 4日 (木)

やぶにらみ生物論124: ドーパミン

ドーパミンは前記事「アドレナリンとノルアドレナリン」でも示したように、生体内ではチロシンからドーパ(L-ドーパ)を経て合成されますが(1、図1)、これ以外のマイナーな別経路も発見されています(2)。いずれにしてもアドレナリン生合成のための中間生成物という位置づけであって、ドーパミン自体が生理的に重要な作用をもっているとは、20世紀半ばまでは考えられていませんでした。

 

A_11

モンタギュー(図2)は人を含む数種の生物の脳などの組織にドーパミンが存在し、これはアドレナリンやノルアドレナリンのように季節によって変動することはないと報告しました(3)。この1957年の論文がドーパミン自体の意義に関する最初の報告とされています(4)。カールソン(図2)らもモンタギューに遅れて報告していますが、彼らの報告にはモンタギューの論文は引用されていません(5、6)。データもきちんと示されておらず、おそらく慌てふためいて学会アブストラクトのような論文を書いたものと思われます。これはフェアーな態度ではありませんが、その後カールソンはドーパミンなど神経伝達物質の機能に関して詳細な研究を行ない、2000年にノーベル生理学医学賞を受賞しました(7)。彼が1994年に日本国際賞を受賞した際の講演要旨が日本語で読めます(8)。

A_15

ファルクとヒラープはファルク・ヒラープ蛍光法というモノアミンを高精度で検出する方法を開発し(9、図2)、モノアミンが神経伝達物質であることの証明に絶大な貢献をしました。ノーベル委員会もカールソンにノーベル賞を授与する際に「It was not Arvid Carlsson who had discovered that dopamine is a signal substance in the central nervous system」と述べているそうです(10)。ファルク・ヒラープ法による研究の実例をひとつ引用しておきます。この論文では、ジュウシマツの膵臓に3種のモノアミン含有細胞が存在することが示されています(11)。

ホーニケヴィツはパーキンソン病の原因が、脳におけるドーパミンの欠乏によるものであることを証明しました(12、13、図2)。またL-ドーパの投与によって症状が改善されることを示しました(14)。ドーパミンは脳-血液関門を通過できませんが、L-ドーパは通過できるので、脳にドーパミンを与えたいときには前駆体であるL-ドーパを投与します。

ドーパミンもアドレナリンやノルアドレナリンと同様、その受容体は7回膜貫通型3量体Gタンパク質共役型受容体(GPCR=GTP-binding protein-coupled receptor )です(15、16、図3)。なので何が起こるかという引き金はGタンパク質のαサブユニットで、ドーパミン受容体の場合、αサブユニットがs型の場合アデニル酸シクラーゼの活性を上昇しさせることによってcAMP 濃度が上昇し、i型の場合アデニル酸シクラーゼの活性を抑制し、フォスフォジエステラーゼの活性を上昇させることなどによって cAMPが分解されるなどの反応で、その濃度は低下します。

なおドーパミンのトランスポーターは特異性の低いモノアミントランスポーターとされているので、これについては別項で取り扱うことにします。

A_17

ドーパミンの受容体にはD1型~D5型があり、このうちD1・D5型にはGαsが結合しており、D2~D4型にはGαiが結合しています。ドーパミンが受容体に結合することによって、これらのGタンパク質が細胞質にリリースされて機能を発揮します。すなわちドーパミン自体がどのような生化学反応のカスケードがおこるべきかを指定するわけではなく、受容体が指定するのです。ですからどの部域の細胞がどんなGPCRを持っているかというタイプの分布の問題が大きな意味をもつことになります(図4、図5)。

これはドーパミン、ノルアドレナリン、アドレナリンの合成経路が直接繋がっていることを考えれば当然とも言えます。つまりアドレナリンを大量に合成すると、必然的にドーパミンとノルアドレナリンも大量に合成することになってしまうからです。

Gαsは受容体タンパク質のC末に、Gαiは5番目と6番目の膜貫通部位の間で細胞質に露出しているループの部分に結合していることがわかっています(図4)。ドーパミンが受容体に結合するとGαは結合しているGDPをGTPに変換し、Gβ・Gγから遊離してフリーとなり、細胞質内を移動して機能を行使します。

A_12

GPCRはヒトゲノムのなかに800種類以上の遺伝子が存在し、中には機能がまだわかっていないものもあります(16)。Gタンパク質の中でGαだけが機能を果たしているのではなく、Gβ・Gγもそれぞれ機能を果たしていると思われますが、αタイプと比べるとまだ未知の部分が多いようです。

脳のドーパミン受容体がそれぞれどんな役割を果たしているかのリストを Anmol Bhatia と Abdolreza Saadabadi が表にまとめているので(17)、そのまま図5に示しますが、どんな手順で、どんな経路を経てこのような機能に繋がっているのかは脳科学の中心課題のひとつでしょう。

A_9

Gαsの機能として最もよく知られているのは、アデニル酸シクラーゼを活性化してcAMPの濃度を上昇させることです(図6)。cAMPが細胞外からの情報伝達物質のメッセージによって細胞内の生化学的プロセスを変動させる、いわゆるセカンドメッセンジャーの役割を果たしていることを明らかにしたエール・サザランドは1971年にノーベル生理学医学賞を受賞しました。彼は貧しい農家の出身で出身大学も無名ですが、運良くセントルイスのワシントン大学の大学院でカール・コリ教授の薫陶をうけることによって未来が開けました(18)。第二次世界大戦では軍医を務めましたが、終戦後も医師にはならず研究の道に進み、cAMPの発見と機能の解明に成功しました。彼はノーベル賞受賞講演の中で「Cori convinced me, not so much by anything he said so much as by his example, that research was the right direction for me to take」と述べています(18)。

A_14

アデニル酸シクラーゼ(またはアデニリルシクラーゼ)は12回膜貫通タンパク質で、N末・C末ともに細胞質側に出ています。アデニル酸シクラーゼには多くのアイソフォームがあり、それぞれGαsで活性化されたり、Gαiで抑制されたりするようです(19)。

A_13

cAMPの作用で最もよく知られているのはプロテインキナーゼAの活性化です。Gタンパク質の影響でアデニル酸シクラーゼの活性が高まり、cAMPの濃度が上昇すると、不活性複合体を形成しているプロテインキナーゼAの制御タンパク質にcAMPが結合して、活性化されたプロテインキナーゼAが複合体から分離してさまざまなタンパク質のリン酸化をおこないます(20、図8)。ただ複合体が解体されるほどcAMPの濃度が高くない場合でも、ある程度の濃度に達すると複合体を形成したまま活性を発揮するとされています(21)。

A_10

さて私達はドーパミンという部屋の扉を開いたばかりですが、ドーパミン研究の歴史とは切っても切れない関係にあるパーキンソン病について、最後にもう少し触れておきます。パーキンソン病は19世紀の初頭にジェームズ・パーキンソンによって報告された病気で、ふるえ、動作や姿勢の異常、筋固縮などがその症状です。20世紀の半ば以降になって、前記したホーニケヴィッツやその他の研究者の努力により、その原因が中脳黒質のドーパミン産生細胞の減少によることが明らかとなってきました(22)。実際L-ドーパの投与により症状は改善されます(23)。ただ長期にわたって投与すると、効かなくなったり逆に悪化する恐れもあります(23)。ドーパミンD1受容体を介する情報伝達の消失が、パーキンソン病の症状の一つである「無動」を引き起すという報告があります(24)。

パーキンソン病の存在によって、ドーパミンの機能が明らかになったという側面はあります。ただそれは入口と出口がわかったというだけで、途中のメカニズムはまだまだわからない点が多いと思います。判明した部分についてはこのあとまた取り上げる機会があると思います。このほか昔からドーパミンが統合失調症にかかわっているという説(ドーパミン仮説)がありますが、この関係についてもまだまだわからない点が多く残されています(25)。このブログでも宿題として残しておきましょう。

参照

1)やぶにらみ生物論123: アドレナリンとノルアドレナリン
http://morph.way-nifty.com/grey/2019/03/post-3143.html

2)ドーパミン:
https://ja.wikipedia.org/wiki/%E3%83%89%E3%83%BC%E3%83%91%E3%83%9F%E3%83%B3

3)K.A. Montagu, Catechol Compounds in Rat Tissues and in Brains of Different Animals. Nature vol.180, pp.244-245 (1957) 
https://www.nature.com/articles/180244a0

4)Kathleen Montagu: 
https://en.wikipedia.org/wiki/Kathleen_Montagu

5)A. Carlsson, M. Lindqvist, T. Magnusson., 3,4-Dihydroxyphenylalanine and 5-Hydroxytryptophan as Reserpine Antagonists., Nature, vol. 180, p.1200 (1957)

6)A. Carlsson et al., On the presence of 3-hydroxytyramine in brain. Science vol. 127, p. 471 (1958)
http://science.sciencemag.org/content/127/3296/471.1.long

7)The novel prize. Avid Carlsson Biographical. 
https://www.nobelprize.org/prizes/medicine/2000/carlsson/biographical/

8)1994年 日本国際賞受賞記念講演会 脳におけるドパミンの研究: 過去、現在及び将来
アーヴィド・カールソン博士
http://www.japanprize.jp/data/prize/summary/1994_j.pdf

9)Falck B, Hillarp N-Å, Thieme G, Torp A.,  "Fluorescence of catechol amines and related compounds condensed with formaldehyde" .   J. Histochem. Cytochem. vol. 10 (3): pp. 348–354. doi:10.1177/10.3.348 (1962)

10)Nils-Åke Hillarp
https://en.wikipedia.org/wiki/Nils-%C3%85ke_Hillarp

11)Katsuko KATAOKA, Keisuke SHIMIZU and Junzo OCHI., Fluorescence Histochemical Demonstration of Monoamine-Containing Cells in the Pancreas of the Finch, Uroloncha striatavar. domestica. A Preliminary Study., Arch. histol. jap., Vol. 40, No. 5, pp. 431-433 (1977)
https://www.jstage.jst.go.jp/article/aohc1950/40/5/40_5_431/_pdf

12)Hornykiewicz O. Topography and behaviour of noradrenaline and dopamine (3-hydroxytyramine) in the substantia nigra of normal and Parkinsonian patients.(In German) Wien Klin Wochenschr 1963;75:309-312.

13)Hornykiewicz O. Dopamine (3-hydroxytyramine) and brain function. Pharmacol Rev vol. 18: pp. 925-964. (1966)

14)Oleh Hornykiewicz., Some Thoughts on Memories., The History of Neuroscience in Autobiography. Vol. 4, Ed. L. R. Squire, Academic Press (2004)

15)Missale C, Nash SR, Robinson SW,  Jaber M, Caron MG., Dopamine receptors: from structure to function., Physiol Rev. vol. 78(1): pp. 189-225. (1998)
https://www.ncbi.nlm.nih.gov/pubmed/9457173

16)足立 直子、齋藤 尚亮:  脳科学辞典 Gタンパク質共役型受容体
こちら

17)https://www.statpearls.com/kb/viewarticle/20660/

18)Earl W. Sutherland., Hormon Action (Nobel Lecture), December 11, 1971
https://www.nobelprize.org/uploads/2018/06/sutherland-lecture.pdf

19)https://en.wikipedia.org/wiki/Adenylyl_cyclase

20)https://courses.washington.edu/conj/gprotein/cyclicamp.htm

21)https://en.wikipedia.org/wiki/Protein_kinase_A

22)こちら

23)Neuroinfo Japan  脳神経外科疾患情報ページ
https://square.umin.ac.jp/neuroinf/medical/502.html

24)南部篤、知見聡美: ドーパミン神経伝達は、大脳基底核における運動情報伝達と、運動発現に不可欠
-ドーパミンD1受容体を介する情報伝達の消失が、パーキンソン病の「無動」を引き起す-
https://www.nips.ac.jp/release/2015/10/_d1.html

25)有波忠雄 脳科学辞典 ドーパミン仮説(統合失調症)
こちら

| | コメント (0)

2019年4月 2日 (火)

サラとミーナ215: パソコン画面を見るミーナ

Img_2923   

ミーナもサラたまに膝を欲しがることがあります。

何か一体感があっていいですね。

下町の飲食店に行くと、たまにお客さんの膝に座るのが好きなネコがいます。たとえそれがはじめてのお客さんであってもです。私の膝で眠ってしまったネコもいました。食べにくくて困ります。

ここしばらく@ニフティーはココログの編集システムの変更に伴うバグフィックスを行っているようですが、それが遅々として進みません。まあどこかに頼んでやってもらっているのでしょうが、日本のIT関連会社のレベルの低さにもあきれるものがあります。

中国に抜かれたなどと言う前に、自滅している感が強いです。なんとかかんとかつじつま合わせてブログを編集していますが、綱渡り感がなくなりません。

早くなんとかしてくれえ🏥🏥🏥


| | コメント (0)

2019年4月 1日 (月)

新元号「令和」にはスターリニズムの臭気がする

1_8 

「令」というのは国語辞典によれば  命令 布告 法令、いいつけ。 などという意味のようです。だとすれば、令和というのは政府の命令によって国家の平和がたもたれるという意味に解釈できます。これにはスターリニズムの臭気が感じられます。安倍政権らしいといえば「らしい」。赤松広隆はこれに抵抗しなかったのでしょうかね?

ほほう 石破茂も「令」という字に違和感を感じるそうな!
https://johosokuhou.com/2019/04/02/13481/

外国のマスメディアでは、日本の右傾化を示す表現だとされています
https://headlines.yahoo.co.jp/hl?a=20190401-00000018-jct-soci

しかるに日本のマスメディアは語感がいいとか、万葉集からの引用は望ましいなどと諸手を挙げての賛成とは驚きです。

 

| | コメント (0)

« 2019年3月 | トップページ | 2019年5月 »