« 指揮者のスキャンダル | トップページ

2018年12月 8日 (土)

やぶにらみ生物論118: 活動電位

17世紀の生物学者スワメルダムが神経伝達の速度は音や光のように速いと考えたことはすでに述べましたが(1)、その速度の測定は19世紀までまたなければなりませんでした。

エミール・デュボア=レーモンはマテウッチの損傷電流(1)に関心を持っていましたが、マテウッチの実験は筋肉で測定したものだったので、どうしても神経でその損傷電流を測定したいと考えました。

ところがなかなか神経ではうまく損傷電流を測定できませんでした。彼が使っていた既存のガルバノメーター(検流計)はコイルが6,000回巻いてあるものでしたが、レーモンは一念発起し、この感度を高めるために数週間かけてコイルを24,000回巻いた高性能ガルバノメーターを作成しました(2)。

自作の高性能ガルバノメーターを使うと、図1Aのように神経における損傷電流を測定することに成功しました。しかも奇妙なことに図1Bのように神経に刺激を与えると、一過性で損傷電流が消滅することがわかりました(1、2、図1)。デュボア=レーモンはこれを電気陰性波と呼びました。興奮の伝導とはこの電気陰性波が刺激部位から神経の両側に沿って移動することを意味します(図1)。

A_6

デュボア=レーモンは1852年に研究をまとめて "On animal electricity" という本を出版しました。この本の翻訳はいくつかあるようですが、例えば2014年に英訳版が出版されていて現在も販売されています(3)。私は未読です。彼の言う電気陰性波の実体は何なのでしょうか? その答えは生物学とはかけ離れた分野からもたらされました。

1869年にドイツの物理学者ヴィルヘルム・ヒットルフは、真空容器の中に電極を封入し電圧をかけると、陽極側の容器内壁が発光することを発見しました(4)。フィリップ・レーナルトとジョセフ・トムソンは、これが陰極から撃ち出される粒子(電子)が容器壁に衝突することによって発生する現象であることとし、原子は物質の最小単位ではなく、その中に電子を含むものであることを証明しました(5、6)。彼らはこの業績により1905年と1906年に相次いでノーベル物理学賞を受賞しました。

電子の存在が明らかになりつつある頃、ユリウス・ベルンシュタインは差動型レオトーム(7)という測定器(検流計)を開発し、レーモンの言う電気陰性波を正確に測定することに成功しました。

電気陰性波はミリセカンド単位の時間しか発生しないので、正確に測定するには機器を開発する必要がありました。電子の存在とベルンシュタインの研究を合わせて考えと、

『神経は通常の状態ではその細胞膜の内側に沿って電子が並んでおり、細胞膜の外側には陽イオンが並んでいて電気的二重層を形成している(図2A)。神経が損傷すると、損傷部位から電子が流出し細胞膜の外側を損傷していない部位へと移動する(図2B)。したがって電流は非損傷部位から損傷部位へと流れる。ここで神経を電流などで刺激すると、刺激を与えた部位から陽イオンが細胞内に一時的に流れ込み(脱分極)、そこに向かって電子が移動するので電流は刺激部位から両方向に流れ、両サイドを刺激する(図2C)。この刺激によって脱分極が誘発され、両サイドにパルスが伝播する』

・・・・・というような考え方で神経伝達が説明できそうです(8)。

図2Bの様な状態の時に神経に刺激を与えると損傷電流とは逆方向の電流が発生するので、デュボア=レーモンの実験で一時的に損傷電流が消滅することも理解できます。

A_2


刺激が与えられていない状態での細胞内外の電位差(静止電位)は、細胞膜内側に電子が並ぶのでマイナス(約-70mV)なのですが、刺激が与えられると陽イオンが細胞内に流入し、非常に短い時間脱分極が起こってプラスに転じます。これが活動電位(アクションポテンシャル)です(図3)。その後陽イオンの細胞外への排出が行なわれ、電位差は元にもどります(図3)。

実はカリウムイオンは細胞内濃度が高いので刺激がくると外に流出するのですが、ナトリウムイオンの流入効果の影響が大きく(赤点線の囲み)、活動電位はプラスとなります(図3)。

A_3

真空容器の中に電極を封入し電圧をかけると、陰極から電子が撃ち出されることは前述しましたが、その電子がぶつかる容器面に蛍光物質を塗っておくと、蛍光物質は電子が衝突することにより発光します。小さな発光する点の明るさを制御することによって画面に像を作ることができます。これがブラウン管の原理であり、テレビができた頃にはみんなブラウン管でテレビを見ていたわけです。これを発明したのはカール・フェルディナント・ブラウンです(9、10、図4)。1909年にノーベル物理学賞を受賞しています。

ブラウン管によって時間による輝度の変化を投射したのがオシロスコープであり、オシロスコープによって活動電位の変化の様子や神経伝達の速度などを観察できるようになり、神経生理学は飛躍的に進歩しました。

A_4


ところで、1920年代には神経伝達が減衰するかしないかで論争があり、特に日本では京都大学と慶應義塾大学でおぞましいほどの激しい論争がおこなわれていたそうです。神経の伝達速度はその種類や太さに依存するので、慶応の加藤元一はなんとか単一神経線維で実験できないものかと考えていたのですが、文献11から引用すると「そして1930~1931年、ついに清水、釜谷、大邸医専から研究に来ていた郭在禧博士らによって神経束から単一神経線維の分離に成功した」とあります。この技術は顕微解剖法によるもので、私は読んでおりませんが文献12に方法が詳しく述べられているようです。この方法を用いた実験で加藤らの非減衰説が勝利しました。

さらに重要なのは、加藤らは自らが考案した図5のような装置を用いて(13)、単独神経線維を刺激する実験から、筋収縮は刺激の強さに応じて収縮の強度が変化するのではなく、一定の閾値を超えた刺激に対して筋肉は常に同じ反応をする=全か無かの法則を証明したことです。このことは文献11によると「1935年,条件反射で有名なパヴロフによって国際生理学会がモスクワで開催された時、加藤先生は単一神経線維の実験のデモを行うため、170 匹のガマとともに一週間のシベリア鉄道の旅を行った。教授は毎朝太陽に向かい、ガマが死なないように祈ったという有名な話がある。パヴロフ会長は、ノーベル賞候補として加藤を推薦したことを告げた。単一神経線維興奮のデモは新入研究生の田崎一二(跳躍伝導の発見者)が行った」 だそうです。

A_5


慶應義塾大学信濃町キャンパスの新教育研究棟の一階の入り口に、武見太郎の筆で「加藤元一先生之像」と刻まれた胸像があるそうです。

文献14によるとそこには「不減衰之記 加藤元一先生、大正六年慶應義塾に医学部創設さるゝや、弱冠二十八歳にして生理学教授とならる。昭和二年「不減衰傳導学説」に対して帝国学士院賞を授与させらる。続いてノーベル賞候補に挙る事再度、その学勲内外に高し。昭和十九年三月義塾に医学専門部、開設されるやその長となり、昭和二十七年三月同部を閉ずるまでの間、四百六十六名の人材を育成し、慶應医学にあらたなる活力を加えたり。この間の教育者としての情熱、蓋し不減衰傳導学説樹立にも勝るものあり。茲に我等卒業生その徳を仰ぎ、その情を慕い且つその智を敬してこの像を建つ。

昭和四十一年文化の日 慶應義塾大学附属医学専門部 卒業生一同」

と記されているそうです。

参照

1)やぶにらみ生物論117: 動物電気への道
http://morph.way-nifty.com/grey/2018/11/post-bca3.html

2)Jef Akst,The Body Electric, 1840s. Emil du Bois-Reymond’s innovations for recording electrical signals from living tissue set the stage for today’s neural monitoring techniques. The Scientist., 2014
https://www.the-scientist.com/foundations/the-body-electric-1840s-36484

3)E H Du Bois-Reymond, On animal electricity., Book on Demand Ltd. (2014)
https://www.amazon.co.jp/Animal-Electricity-H-Du-Bois-Reymond/dp/5519073244

4)https://ja.wikipedia.org/wiki/%E9%99%B0%E6%A5%B5%E7%B7%9A

5)https://en.wikipedia.org/wiki/Philipp_Lenard

6)https://en.wikipedia.org/wiki/J._J._Thomson

7)https://en.wikipedia.org/wiki/Julius_Bernstein

8)Seyfarth E.A., Julius Bernstein (1839–1917): pioneer neurobiologist and biophysicist. Biological Cybernetics., Vol. 94, Issue 1,  pp. 2–8  (2006)
https://link.springer.com/article/10.1007%2Fs00422-005-0031-y
https://dl.acm.org/citation.cfm?id=1108509.1108511

9)https://en.wikipedia.org/wiki/Karl_Ferdinand_Braun

10)https://en.wikipedia.org/wiki/Cathode-ray_tube

11)大村裕:我が国の神経生理学の黎明期 日本生理学雑誌 Vol. 71,No. 1, pp. 44-49 (2009)
http://physiology.jp/wp-content/uploads/2014/01/071010044.pdf

12)加藤元一 The microphysiology of nerve., Maruzen, Tokyo, (1934)

13)杉晴夫 「生体電気信号とはなにか」 講談社ブルーバックス (2006)

14)山内慶太 蝦蟇(がま)と三色旗 三田評論 2016年7月号
https://www.keio-up.co.jp/mita/r-shiseki/s1012_2.html

|

« 指揮者のスキャンダル | トップページ

生物学・科学(biology/science)」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)




トラックバック

この記事のトラックバックURL:
http://app.cocolog-nifty.com/t/trackback/133582/67461877

この記事へのトラックバック一覧です: やぶにらみ生物論118: 活動電位:

« 指揮者のスキャンダル | トップページ