やぶにらみ生物論108: 視覚の進化
前稿では視覚の生化学的基盤について述べました(1)。光が当たることによってロドプシン分子が構造変化し、それが引き金となってイオンチャンネルの開閉が行なわれ、脱分極や過分極によって発生する電気信号が視覚の基盤となります。この原理はあらゆる動物で変わりません。一方受光するための装置はカンブリア紀がはじまる頃から、様々な形で進化してきました。まず Michael F. Land (図1)の説(2)にしたがって、眼の進化をみていきましょう。図1は原図を省略表示し、改変し、日本語化しました。
図1の系統樹の根元にある扁形動物は、数億年の昔からこの地球に生きているにもかかわらず、視覚は最小限のままで特に発達させることはありませんでした。その理由は彼らの大部分が寄生生活に乗り換えたことにあると思われますが、自由生活をするプラナリアなどは捕食されても一部の体が残っていれば再生できるという驚異的な能力を獲得したため、高度の視覚・素早い運動・防具としての甲殻などは必要とせず、ゆっくり日陰に移動するという能力さえあれば生きて行けたというのも一つの理由でしょう。
彼らにとってはタイプa(図1)の眼で十分だったのでしょう。プラナリアの眼は眼房もなければレンズもない原始的なものですが、シェード付きなのでひとまわりすれば明るさだけでなく光が来る方向を感知することができます(1)。
扁形動物より原始的なグループである刺胞動物は、扁形動物よりはずっとアクティヴな自由生活をしてきたので、中にはハコクラゲやアンドンクラゲのように1段階進化したタイプcの眼を持つグループも出現しました。たとえばミツデリッポウクラゲは24個の眼を持っていて、そのうち2個は水晶体を持っているというのですから、これはもうLandが記載したタイプcを越えています(3)。しかも彼らは脳らしきものを持っていないので、神経環で眼からの情報を処理していると思われますが、よほど効率的な処理を行なっているのでしょう。図1ではタイプ c+としました。
進化系統樹では扁形動物以降、原口陥入部が口になる旧(前)口動物群と肛門になる新(後)口動物群に分かれますが、前者の場合ヒトと同等な眼を持つ軟体動物の頭足類から、複眼を極限まで発達させた節足動物の昆虫類まで様々なタイプが存在します。複眼は図1のタイプb、eですが、eタイプは個々の眼にレンズがついています。*の部分が短いと解像度の高い像が得られ、長いとより明るい像が得られる傾向があります(他の眼に入射した光もセンサーにはいってくる可能性が高いので)。蛾などの夜行性昆虫は後者に該当します。
単眼タイプと複眼タイプの両者を持っている生物もいれば、眼がほとんど退化したような生物もいます。基本的に眼の進化はそれほど長い時間を要しないと考えられています。光信号を化学信号から電気信号に変換する機構は、動物の場合、進化の過程で1度だけつくられてそのまま使われていますが、眼という光学装置は何度も個別に進化した結果、結果的に類似した装置をそれぞれの生物が装備することになった場合もあるようです(4)。
少し前まで旧口動物の光受容細胞は微絨毛が進化した装置を持ち、新口動物の光受容細胞は繊毛が進化した装置を持つと考えられていましたが、例外があることが明らかになったので(5、6)、旧口動物・新口動物というようなおおざっぱな分類においても、あるときに微絨毛型と繊毛型という別々の戻れない道に別れたとは言えなくなりました。なお繊毛は本来細胞の表面積を増やすためのものではなく、これを動かして細胞を移動させたり水流を起こすためのものです。つまり光受容装置としての繊毛は、後の時代に流用されたと考えられます。
脊索動物門と最も近縁な棘皮動物門は非常にユニークな視覚を持っています。ウニの場合無数の棘と管足があるわけですが、光受容細胞は管足にあり、それぞれの管足は棘で仕切られているので、体全体が特殊な複眼のような構造になっているわけです(7、8)。これにたいして脊索動物門の生物は複眼を棄て、a → c → d という比較的単純な眼の進化を遂行したようです(図1)。両生類より系統樹の上位の生物は基本的に陸上で生活するので、網膜の乾燥を防ぐために透明な被膜(角膜)で被うのは必須で、それがレンズに進化したのもよく理解できます。
脊索動物門の生物は最初から眼を持っていたかというと、それは疑問です。カンブリア紀のピカイア(図2)は眼を持っていません(9)。ピカイアは脊索はもっていますが脊椎は持っていないので、脊索動物門の中では原始的なグループだと考えられます。しかし同じカンブリア紀のハイクイクシスは脊椎動物であり、明らかに眼を持っています(10)。カンブリア紀以前には眼を持つ生物は発見されていないので、短い期間に図2(右図)のレベル1からレベル4または5あたりまでの進化が進行したと思われます。
現代魚類の眼(11、図2)はレベル5くらいで、角膜はありますが光量調節機能を持つ虹彩はありませんし、レンズ(水晶体)の厚みを変えてピントをあわせることはできません。図3はヒトの眼の構造です。平滑筋のはたらきによって、光量に応じて自動的に虹彩が開閉して適当な明るさに調節できますし、見たいものの遠近に応じて自動的に毛様体が収縮し、レンズの厚みを調節してピントを合わせることができます。また多数の随意筋(横紋筋)によって目玉が向く方向を自在に調節できます(図3)。参天製薬のサイトでアニメーションを使ってわかりやすく説明しています(12)。
哺乳類の眼と頭足類の眼は、図1でわかるように系統樹上は離れた位置にありますが、非常に似た構造になっています(図4)。図4はウィキペディアから持ってきましたが(13)、多分間違っていると思うのは、頭足類の眼は焦点を合わせるためにレンズを前後に動かすので、この毛様体の付き方ではそれはできそうもありません。一つ注目していただきたいのは、図4でヒトの場合視細胞の裏側に網膜があるのに対して、タコの場合視細胞の表側に網膜があります。このことは発生の過程が全く異なっていることを意味しており、両者のルーツが別にあることを示唆しています。
タコの場合視細胞の表側(外界側)に網膜(ロドプシン集積部位)があるので盲点が発生しませんが、ヒトの場合視神経が眼房に出てくるあたりは構造的に網膜が作れないので(図4の4)、盲点が発生します。もうひとつタコの方が優れているのは偏光を検出できると言う点です。ヒトでもなかには偏光が見えるという人がいるそうです(ハイディンガーのブラシ、14)。
ヒトの眼には桿体細胞と錐体細胞という2種類の視細胞があります(図5)。ウィキペディアによると眼一つについて、桿体細胞は1億個、錐体細胞は7百万個あるそうです。哺乳類は恐竜と同時代に生まれて生き延びてきたという歴史があるので、恐竜全盛時代には夜行動せざるをえなかったわけです。ですから哺乳類はロドプシンを1種類しか持たない桿体細胞で、モノクロの視界を得るので十分な時代が長かったのです。圧倒的に桿体細胞が多いのは、そういう歴史を背負っているからでしょう。
桿体細胞・錐体細胞共に外側にシナプス形成部位があり、その内側に核があり、さらに内側に内節があります。内接の内端に結合繊毛という部位があり、そこでロドプシンが集積する特殊な棚状の構造が内側に押し出されるようにつくられ外節が形成されます(15)。網膜はその外節がぎっしり並んでいる部分のことです(顕微鏡で見ると層状に見える)。ロドプシンは光情報を化学情報に変換するだけでなく、外節構造(網膜)をつくるためにも必要です(16)。
ヒトの場合錐体細胞は3種類のロドプシンを発現していて、それぞれどの波長の光に反応するかを図6に示しました。生物は最低でも2種類のロドプシンが存在することによって、はじめて色彩を感じることができます。ロドプシンAとロドプシンBの反応のレベルの違いを色という形で認識するのです。ですからAとBが最大に反応する波長が離れているほど色の種類を多く識別することが出来ます。
多くの哺乳類は2種類のロドプシンしか持っていませんが、ヒトは3種類のロドプシンを持っているため白という色を認識できます。宮田隆によれば「南米に住む新世界ザルには色覚に関して興味深い性差がある。オスは2色の色覚しか持たないが、メスには3色の色覚を持つ個体がいる。この色覚に関する性差は、X染色体がメスでは2本あるが、オスでは1本しかないことと関係がある。」 だそうです(17)。旧世界ザルは3色の色覚があるので、3色の色覚はサルの進化の過程で獲得されたのでしょう。これは多くの木の実が赤い・・・したがって赤い色を認識できれば生存に有利だった、ということと関係があるようです(17)。
ヒトよりすぐれた色覚を持っているのは鳥類で、彼らは4種類のロドプシンを持っている上に、そのうちのひとつは紫外線を感知できます(18)。昆虫も紫外線を感知できるロドプシンを持っています。昆虫は私達にはない複眼という別種の眼を持っています。図7にトンボとハエの複眼を示します(19)。
複眼に含まれるひとつひとつの眼を個眼といいます。トンボの複眼は約5万個の個眼で構成されています。複眼の場合ひとつの個眼を1画素としたデジタルカメラに例えられますが、5万画素のデジタルカメラは優秀なのでしょうか?
水波誠の本によると(20)、身長と眼の解像度は比例しているというキルシュフェルトの理論というのがあるそうで、それならば昆虫の複眼の解像度は悪いとはいえないそうです。ただトンボやミツバチなどは身長から考えると超高速で飛翔する動物なので、解像度よりむしろ衝突をさけるための情報処理の速さが重要であるとは言えるのではないでしょうか。実際ハエは一秒間に150回の点滅を認識できるそうです(20)。
昆虫の複眼の構造を図8に示します。レンズ(水晶体)のすぐ下に視細胞があり、個眼は光がまじらないよう色素細胞のシェードで分離されています。個眼8個(または9個)でひとつのユニットが形成されおり、それらが花弁のように並んだ中央に桿状体というロドプシンが集積した部位が見られます(図8)。個眼8個のユニットは最大感知波長が緑・青・紫外の3種類の色素細胞で構成されているので、ユニットごとに色彩を感知することが出来ます(20)。
昆虫が色彩を認識できることをはじめて示したのはカール・フォン・フリッシュ(図9)でした。彼は若い頃に魚が色を識別できることを証明し、さらにミツバチも色を識別できることを証明しました(20、21)。
図9のヒトとミツバチが認識する光の波長を示した図は Webexhibits というサイトからの引用です(22)。これによるとヒトほどはっきりではなくてもミツバチにも赤い色が見えていると思われます。しかし紫外線領域はミツバチにははっきり見えていてもヒトには全く見えていませんので、ミツバチの見ている色彩はかなりヒトとは異なるようです。図9の花の色彩は左がヒト、右がミツバチです(23)。ミツバチの見ている色なんて、ヒトには見えないのだからこのようなプレゼンテーションは意味が無いという向きもあり、Hamiltonも "Because we cannot see UV light, the colours in these photographs are representational, but the patterns are real. " と書いていますが、その筋の研究者から、ミツバチには多分図9のように見えているという話を聞いたことがあります。
鳥は昆虫と同じくらい紫外線領域が見えるので、かなりミツバチなどと同じ色彩感覚だと思われます。ログミというサイトに鳥の見え方を示した記事がありました(24)。
この中でヒトが精細にみることができる範囲(例えば文字を読んだりする)はせいぜい10度くらいの角度に限定されている(実際モニターの画面の中央を読んでいると端っこの文字は、なにか文字があるということはわかっても。目玉か首を動かさないと読めません)、という記述があります。ところが、カモメは水平に見えているすべての物を、広角にわたって精細に見ることができるそうです。つまり眼の性能で言えばカモメはヒトよりはるかに優れています。
参照
1)生物学茶話@渋めのダージリンはいかが107: 視覚とは (やぶにらみ生物論107: 視覚とは)
http://morph.way-nifty.com/lecture/2018/06/post-651d.html
2)Michael F. Land and Dan-Eric Nillson., Animal eyes. Oxford University Press
(2002)
https://books.google.co.jp/books?id=aAZ_YfVoCywC&pg=PA1&hl=ja&source=gbs_toc_r&cad=3#v=onepage&q&f=false
3)ナショナルジオグラフィック日本版2016年2月号 不思議な目の進化
http://natgeo.nikkeibp.co.jp/atcl/magazine/16/012200005/012200001/?img=ph3.jpg&P=2
4)https://ja.wikipedia.org/wiki/%E7%9C%BC%E3%81%AE%E9%80%B2%E5%8C%96
5)中川将司,堀江健生、ホヤ幼生の光受容器 -脊椎動物の眼との比較- 比較生理生化学 vol. 26 No.3 pp. 101-109
(2009)
https://www.jstage.jst.go.jp/article/hikakuseiriseika/26/3/26_3_101/_article/-char/ja/
6)片桐展子 & 片桐康雄. イソアワモチの多重光受容系:(1)4種類の光受容細胞の特徴と光応答 比較生理生化学 25,
4-10 (2008).
https://www.jstage.jst.go.jp/article/hikakuseiriseika/25/1/25_1_4/_pdf/-char/ja
7)Ullrich-Lüter EM, Dupont S, Arboleda E, Hausen H, Arnone MI., Unique system
of photoreceptors in sea urchin tube feet., Proc Natl Acad Sci U S A. vol.
108(20): pp. 8367-8372. doi: 10.1073/pnas.1018495108. (2011)
https://www.ncbi.nlm.nih.gov/pubmed/21536888
8)ナショナルジオグラフィック日本版2011年5月号 ウニは全身が“眼”だった
http://natgeo.nikkeibp.co.jp/nng/article/news/14/4200/
9)Morris SC, Caron JB., Pikaia gracilens Walcott, a stem-group chordate from
the Middle Cambrian of British Columbia., Biol Rev Camb Philos Soc. May; vol.
87(2): pp. 480-512. (2012) doi: 10.1111/j.1469-185X.2012.00220.x. Epub 2012 Mar
4.
https://www.ncbi.nlm.nih.gov/pubmed/22385518
10)D.-G. Shu et al., Head and backbone of the Early Cambrian vertebrate
Haikouichthys., Nature vol. 421, pp. 526–529 (2003)
https://www.nature.com/articles/nature01264
11)裳華房 目のしくみ (Structure of Eye)
https://www.shokabo.co.jp/sp_opt/observe/eye/eye.htm
12)参天製薬 目のピント調節のしくみ
https://www.santen.co.jp/ja/healthcare/eye/products/otc/sante_medical/eyecare/focus.jsp
13)https://ja.wikipedia.org/wiki/%E7%9C%BC%E3%81%AE%E9%80%B2%E5%8C%96
14)https://en.wikipedia.org/wiki/Haidinger%27s_brush
15)今西由和 脊椎動物の視細胞をモデルとしたタンパク質輸送および膜構造形成の時間空間的解析 生物物理 vol.56(1),pp. 18-22,
(2016)
DOI: 10.2142/biophys.56.018
https://www.jstage.jst.go.jp/article/biophys/56/1/56_018/_pdf
16)http://www.oyc-bio.jp/products/view/service004
17)宮田隆 眼で進化を視る -その2- (2006)
https://www.brh.co.jp/research/formerlab/miyata/2006/post_000004.html
18)杉田昭栄 鳥類の視覚受容機構 バイオメカニズム学会誌 vol. 31, no.3, pp.143-148 (2007)
https://www.jstage.jst.go.jp/article/sobim/31/3/31_3_143/_pdf
19)https://en.wikipedia.org/wiki/Arthropod_eye
20)水波誠 「昆虫-驚異の微小脳」 中公新書 (2006)
22)Webexhibits: What colors do animals see?
http://www.webexhibits.org/causesofcolor/17.html
23)Michael Hamilton, A bees-eye view: How insects see flowers very
differently to us., (2007)
http://www.dailymail.co.uk/sciencetech/article-473897/A-bees-eye-view-How-insects-flowers-differently-us.html
| 固定リンク | 0
「生物学・科学(biology/science)」カテゴリの記事
- 続・生物学茶話253: 腸を構成する細胞(2024.12.01)
- 続・生物学茶話252: 腸神経(2024.11.22)
- 続・生物学茶話251: 求心性自律神経(2024.11.14)
- 続・生物学茶話250: 交感神経と副交感神経(2024.11.06)
- 自律神経の科学 鈴木郁子著(2024.10.29)
コメント