やぶにらみ生物論87: トランスポゾン1
トランスポゾンとは染色体上での位置を変えることができるDNA断片のことですが、発見したのはバーバラ・マクリントックという女性科学者です(図1)。
彼女が辿った道をまず見ていきましょう。彼女は1902年の生まれで日本では明治の末期ですが、当時は米国でも女性が科学者になるのはまれなことでした。実際コーネル大学の農学部に進学したのですが、希望した植物育種学科は女人禁制で、大学院も遺伝学は女性は専攻できなかったので、やむなく植物学を専攻することになりました。
マクリントックが最初に目指したのは、当時モーガン研のスターティヴァントがショウジョウバエの4つの染色体を識別し、それぞれにおける遺伝子の場所を記した染色体地図を発表していたので、彼女が研究材料としていたトウモロコシでも染色体地図を作成するということでした。彼女はまず染色体を識別する上で助けになる酢酸カーミン染色法を開発しました。これは図1のカルミン酸を酢酸に溶かして鉄イオンなどを加えた染色液を用いる方法で、現在でも使われています。カルミン酸はある種のカイガラムシが合成する色素で、1991年まで人工合成はできませんでした。
彼女はまず自らの染色法を駆使して、トウモロコシの染色体が10組20本であることを確定し、各染色体に1~10番の番号を付けました(1)。この論文を発表した年(1929)に、ハリエット・クレイトン(図2)という大学院生がやってきて、マクリントックの指導で研究をはじめました。彼女たちが興味を寄せたのは奇妙な形の染色体を持つトウモロコシの変異体でした。当時としては、組み換えという現象があることはわかっていましたが、これが線路のポイント切り替えのようなダイナミックな染色体の物理的切断と結合の結果なのか、それとも遺伝子ごとの交換のようなミクロな現象なのかよくわかっていませんでした。
クレイトンとマクリントックは、染色体の両端にそれぞれ特徴的な構造、すなわちノブとしっぽ(非染色体DNA)を持つ変異体をみつけて、ノブとしっぽが組み換えによっていれかわることを示しました。これによって組み換えが可視化され、誰もが染色体の切断と再結合(交叉)によって組み換えが行われることを納得しました(2)。図2をみると、CとWという2つの遺伝子の間で組み換えがおこると、Cはノブ、Wはしっぽと行動を共にしており、物理的な染色体の切断・結合と、形質から判断される遺伝子の組み換えが同時に起こっていることがわかります。
私はこの文章を書くに当たって、マクリントックが後にトランスポゾンの理論をうちたてるきっかけとなった論文のことを調べるために文献(参照3)にあたりました。その中には
「1931年の秋、彼女はカリフォルニア大学バークレイ校の研究者から送られてきた別刷りを受け取った。そこに彼女がミズーリで見たものと同じ種類の斑入りが載っていた。バークレイの研究者たちもまた、染色体の切断あるいは欠落で生じた小さな染色体について触れていた」
という記述があります。ところがこのバークレイの研究者が誰なのかは書かれていません。
不満を感じながら調べたところ、マクリントックの論文(4)に引用文献がありました。この論文には引用文献が2つしかなく、そのひとつでした。Nawashin M. という人物の論文なのですが、さらに調べると、どうもこの引用文献のスペルが間違っているらしくて、Navashin M. という人物なら当時バークレイ校で植物の遺伝学をやっていたようなのですが、Nawashin M. という人物は見当たりませんでした。伝記を書いて出版するのなら、ちゃんとカリフォルニア大学バークレイ校に行くなり、文献を取り寄せるなりして調べて確認してから書いてほしいと思いますね。これからは全く私の想像ですが、Navasin さんはドイツ語でも論文を書いているのでドイツ人で、本来は Nawashin だったわけですが、米国では名前の発音が違って呼ばれるのが嫌で Navashin にスペルを代えたのではないでしょうか?マクリントックへの手紙には Nawashin と書いたのかもしれません。
マクリントックは斑入りの原因が、環状染色体(5、図3)内における染色分体間での姉妹鎖交換によって、セントロメアを2個含む染色体と全く含まない染色体が形成され、セントロメアを含まない染色体は細胞分裂によって娘細胞に分配されないため、色に関する遺伝子が無効になった細胞集団ができることによって斑入りが発生することを示しました(4)。
マクリントックは米国学術研究会議から奨学金をもらって、コーネル大学、ミシガン大学、カルテックなどを渡り歩いて研究をしていましたが、それが切れてしまって、ドイツで研究を続けることにしました(6)。1933年~1934年はドイツで核小体と染色体の関係について研究していましたが、ナチスドイツの台頭もあって、コーネル大学に戻ることになりました。
そして1936年に、30才代半ばでようやくミズーリ大学での定職(assistant professor)を得ることができました。Assistant professor といえば日本では助教のようなポストでしたが、その状態で彼女は米国遺伝学会の会長になりました。マクリントックは全く協調性がなく、喧嘩っ早い人間だったので、業績は大いに評価されてもポストは与えられず、女性の地位が低かった時代とは言え、あとからきた女性に先に准教授(associate professor)のポストが与えられるという有様でした(3)。
マクリントックが幸運だったのは、このような状況の中で旧友のマーカス・ローズがコールド・スプリング・ハーバー研究所に誘ってくれたことでした。ここは生物学のジャンルでは最も有名なシンポジウムが開催される場所として業界で知らない人はいません。夏期休暇を利用して多くの研究者が集まる施設ですが、冬は静かな環境で思う存分研究ができる場所でした(図4)。
この研究所のたたずまいはちょっと変わっていて、図4のように普通のビルディングではなく、敷地に散在する個人の住宅のような建物がひとつの研究室になっています。右はマクリントックの研究室で、彼女が亡くなったあともそのまま保存されていました。
このような施設をみると、日本人は科学を利用しようとするだけで、愛してはいないということを痛感させられます。ちなみに2009年にはコールド・スプリング・ハーバー・アジアが中国の蘇州に開設され、活動を開始しました。これからの科学は中国によって牽引されることが予感させられます。
これからの話を理解するためにアントシアニジンという色素について説明しなければなりません。この色素は多くの植物で花や実の色に関与しており、複雑な過程を経て合成され、しかも図5のように側鎖の種類によって様々な発色が可能です。実際にはこの色素に糖が結合した配糖体の形で花や実に存在しています。
マクリントックは1941年12月から、ほとんどの残りの人生をコールド・スプリング・ハーバーで過ごしました。1941年12月といえば、8日の真珠湾攻撃から太平洋戦争が勃発した時期でした。彼女が「動く遺伝子」の研究を始めたのは1944年ですから、日本軍が太平洋の島々で玉砕を重ねていた時期です。「動く遺伝子」に関する仕事は非常に困難だったので、数年間は論文が書けませんでしたが、戦争中にもかかわらずカーネギー財団はずっと援助を続けました。
この間にマクリントックは、Ac と Ds というDNA上の因子が、DNA上で他の部位にジャンプして遺伝子発現の調節を行っていることをつきとめました。例えば図6で言えば、通常は紫色の実が、Dsがアントシアニジン合成遺伝子の位置に移動してくると、その合成遺伝子の発現が抑制されて実の色が白くなり、Dsがそこから抜けて移動すると、ふたたび色素が合成されるようになります。どの程度元に戻れるかによって発色の状況が違っていきます。これが斑入りの原因になります。
マクリントックは1951年にコールド・スプリング・ハーバー研究所のシンポジウムで「動く遺伝子」に関する永年の研究成果を発表しました。しかし予想に反して全く反響はなく、誰も彼女が何を言っているのか理解できませんでした。ジャコブとモノーのオペロン仮説よりも前、ワトソンとクリックの二重らせんよりも前だったので、当時としては想像もできないようなお話だったようです。DNAの一部が遺伝子の活動を制御するなどと言う概念すらなかった時代だったということもありますが、当時は遺伝学者の興味がファージや大腸菌に大きく傾いていた時代だったので、トウモロコシの話題などみんなあまり興味がなかったのでしょう。
その後も分子生物学的な裏付けがなかったので、「動く遺伝子(トランスポゾン)」はなかなか業界で認められませんでしたが、1982年にスプラドリングとルビン(図7)がショウジョウバエにPエレメントが存在することを証明し(8、9)、ついに1983年にフェドロフ(図7)がトウモロコシのAcとDsの分子的実体とその動きを解明した(10)ことで、間髪を入れずマクリントックはノーベル生理学医学賞を授けられることになりました。
授賞時マクリントックは80才を越えていましたが、メンデルと違って生きているうちにきちんと再評価されたのはよかったと思います。ただ私の意見としては、ニーナ・フェドロフと共に授賞すべきだったのではないか、そのほうがマクリントックも嬉しかったのではないかと思いますね。天才だけでなく、実験的証明を行った人々についても、きちんと評価されて然るべきです。
現在ではトランスポゾンは細菌からヒトに至るまでユニバーサルに存在することが知られていますし、種類も様々です。少し長くなりそうなので、続きは次回に述べることにします。
参照
1) B. McClintock., Chromosome Morphology in Zea mays. Science 69:
629 (1929)
http://science.sciencemag.org/content/69/1798/629.long
2)Creighton, H., and McClintock, B. 1931 A correlation of cytological and
genetical crossing-over in Zea mays. PNAS vol. 17: pp. 492–497 (1931)
http://www.esp.org/foundations/genetics/classical/holdings/m/hc-bm-31.pdf
3)Ray Spangenberg and Diane Kit Moser 著, 大坪 久子 (翻訳) 「ノーベル賞学者バーバラ・マクリントックの生涯 動く遺伝子の発見」 養賢堂 2016年刊
4)B. McClintock., A correlation of ring-shaped chromosomes with variegation
in zea mays., Natl. Acad. Sci. USA, vol.18, no.12, pp. 677-681 (1932)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076312/pdf/pnas01740-0003.pdf
5)Lillian V. Morgan., Correlation between shape and behavior of
archromosome., Proc. Natl. Acad. Sci. USA, vol. 12., pp.180-181 (1926)
http://www.pnas.org/content/12/3/180
6)Famous scientists. Barbara McClintock.,
https://www.famousscientists.org/barbara-mcclintock/
7)Barbara McClintock, The origin and behavior of mutable loci in maize., Proc. Natl. Acad. Sci. USA vol. 36, pp. 344-355 (1950)
8)Spradling AC, Rubin GM, "Transposition of cloned P elements into
Drosophila germ line chromosomes". Science. vol. 218 (4570): pp. 341–347.
(1982)
Bibcode:1982Sci...218..341S. PMID 6289435.
doi:10.1126/science.6289435.
9)Rubin GM, Spradling AC, "Genetic transformation of Drosophila with
transposable element vectors". Science. vol. 218 (4570): pp. 348–353.
(1982)
Bibcode:1982Sci...218..348R. PMID 6289436.
doi:10.1126/science.6289436.
10)N. Fedoroff, S. Wessler, and M. Shure, Isolation of the transposable maize controlling elements Ac and Ds., Cell vol. 35, pp. 235-242 (1983)
| 固定リンク | 0
「生物学・科学(biology/science)」カテゴリの記事
- 続・生物学茶話246: シナプス前細胞のアクティヴゾーン(2024.09.15)
- 続・生物学茶話245:シナプスとSNARE複合体(2024.09.08)
- 続・生物学茶話244:記憶の科学のはじまり(2024.08.29)
- 続・生物学茶話243:記憶の源流をたどる(2024.08.19)
- 続・生物学茶話242:脚橋被蓋核(2024.07.30)
コメント