« 軽子坂 | トップページ | トランプに戦々恐々 はてさてどうなることやら? »

2017年1月 5日 (木)

やぶにらみ生物論55: mRNAへの道2

前稿「やぶにらみ生物論54: mRNAへの道1」で述べたように、シャープやレダーらによって真核生物の遺伝子がイントロンによって分断されていることが明らかになり、これは真核生物の特徴であるとしばらく考えられていましたが、しばらくするとイントロンは細菌や古細菌にも存在することがわかりました(1)。このうち古細菌のイントロンはわが国の研究者達が発見したものです(2)。

図1に各種イントロンのリストをまとめて記しておきます。真核生物においてもミトコンドリアや葉緑体の遺伝子には細菌型のイントロンが存在します。またrRNAには細菌型の、tRNAには古細菌型のイントロンが存在します。細菌型のイントロンはイントロン自身が酵素の機能を持っていたり、イントロンの内部に酵素の遺伝子を持っていたりして、自力でスプライシングを行うことができます。

1a

細菌のイントロンには様々なものがありますが、いずれも構造は複雑です。本来は蛋白質である酵素の役割をRNAが代替しようというわけですから、それは当然と言えます。ここではウィキペディアからグループIIイントロンの構造を拝借して、図2として示しておきます。

2a

古細菌型のイントロンはリボヌクレアーゼとRNAリガーゼによってスプライシングが行われます。真核生物でもtRNAのイントロンでは古細菌型のスプライシングが行われますが、オルガネラやリボソーム遺伝子以外の大部分の遺伝子はスプライソソームというメカニズムでスプライシングが行われます。

イントロンというのはDNAの病気であり、スプライシングとはそのひとつの治療法です。DNAレベルでは治療不可能なので、転写されたときにRNAレベルで治療を行うわけです。参照文献(1)によると、クラミドモナスという藻類ではミトコンドリアのある酵素が1~2億年の間に核に移転したことがわかっていますが、その間に真核生物型のイントロンが、この酵素の遺伝子に15個も挿入されていたそうです。1000万年に1遺伝子あたり1個のイントロンが挿入されるという計算ですね。ヒトの遺伝子は約2万あるので、1000万を2万でわると500ですから、約500年にひとつイントロンが増加する計算になります。

えらい迷惑な話ですが、イントロンも長い間「ホスト」のDNAに棲み着いていると、その内部にエンハンサーが挿入されたり、イントロンの塩基配列が変わるとスプライシングに失敗したりするので、それなりに役割を主張しはじめる、言い換えれば進化的保存を要求することになります。

3ajoansteitz1941_2ともあれイントロンはタンパク質合成の際にアミノ酸配列として反映されることはないので、タンパク質をコードするRNA(すなわちmRNA)においては、必ずなんらかのメカニズムによって取り除かれなくてはいけません。

ジョアン・スタイツ(1941-、図3)らのグループは、small nuclear RNA という機能が不明だった核内のRNAが、タンパク質と複合体をつくって1群の small nuclear ribonucleoproteins (snRNP) をつくり、このsnRNPがmRNAのスプライシングにかかわっていることを示唆しました(3)。その後このsnRNP複合体はスプライソソームあるいはスプライセオソームなどとよばれています。

イントロンが取り除かれるプロセスを簡単に示したのが図4ですが、多くの場合イントロンはキャップ側の端がGU、ポリA側の端がAGとなっています。また中間部分に存在するAが重要な役割を果たします。その他ピリミジンリッチな配列とか、それぞれのsnRNPに親和性がある配列などがありますが、厳密には定められていません。

4a

第1のステップでは、キャップ側のGUがはずれて中間部のAと結合します。これはAの2の位置のOHがエクソン1右端の 3'-5' 結合を攻撃して切断し、AG結合をつくることによって実現します。この結果投げ縄のような構造が形成されます(図4)。第2のステップでは、エクソン1右端の3OHがエクソン2左端を攻撃して切断し、エクソン1とエクソン2が結合し、同時に投げ縄構造となったイントロンが切り離されます(図4)。

真核生物のイントロンは、細菌のような複雑な構造をとっているわけではなく、リボザイムではないので、図4のようなダイナミックな反応(スプライシング)は外部因子の力を借りて行われます。スプライシングを実行する外部因子とは U1、U2、U4、U5、U6 という snRNP で構成されるスプライソソームです。他の因子もかかわっていますが、ここでは省略します。詳細な知識が必要な方は参照文献(4)などを参照して下さい。

図5のようにまずU1がイントロンとエクソン1の境界部に結合します。U1はこの位置に結合するためのRNAを含んでいます。図ではぴったりイントロンのキャップ側(5' 側)の塩基配列と対合していますが、ぴったり対合する必要はありません。同時に中間部にあるAの近傍にU2が結合します。これにU4+U5+U6の複合体が結合してイントロンにテンションを発生させ、Aをエクソン1の右端に接近させてエクソン1とイントロンを切断します。

ここでU4がはずれ、U5+U6がエクソン1の右端とエクソン2の左端を接近させて連結させます。この反応によって、イントロンの投げ縄構造とそれに結合しているsnRNP群がはずれて、mRNAが完成します。

5a_2

こうして完成したmRNAですが、蛋白質合成に使用するためにはもう一手間かけなければなりません。それは核膜というバリアを抜けて、リボソームのある細胞質まで行かなければならないからです。核膜には核膜孔という関所のような穴があって、生体高分子はそこを通らないと核に入ったり核から出たりすることはできません。

ここを通過するためにmRNAが持つべき通行手形とその作成過程はまだ未知の部分があって、ワトソンの教科書などでもあっさりと通り過ぎています。Tapとp15という二つの蛋白質の複合体(ヘテロダイマー)が、mRNAにべったりくっつくことが重要だという説は正しいようですが(5)、まだわかっていない部分も多いと思われます。

参照

1)大濱武 遺伝子の中の厄介者、イントロンはどうしてなくならないか 生命誌 29号 (2000)
https://www.brh.co.jp/seimeishi/journal/029/ex_1.html

2)渡邊洋一、横堀伸一、河原林裕、原核生物遺伝子のイントロン 古細菌タンパク質遺伝子のイントロンの発見 蛋白質・核酸・酵素 vol.47, pp.833-836 (2002)

3)M.R. Lerner, J.A. Boyle, S.M. Mount, S.L. Wolin & J.A. Steitz, Are snRNPs involved in splicing?  Nature vol.283, pp.220 - 224 (1980); doi:10.1038/283220a0
http://www.nature.com/nature/journal/v283/n5743/abs/283220a0.html

4)J.D. Watson et al. Molecular Biology of the Gene 6th edn.  (2008) or 7th edn (2013)

5)大阪大学大学院 米田研究室のサイト: 
http://www.anat3.med.osaka-u.ac.jp/research/research3_1.html

|

« 軽子坂 | トップページ | トランプに戦々恐々 はてさてどうなることやら? »

生物学・科学(biology/science)」カテゴリの記事

コメント

コメントを書く



(ウェブ上には掲載しません)




トラックバック

この記事のトラックバックURL:
http://app.cocolog-nifty.com/t/trackback/133582/64723368

この記事へのトラックバック一覧です: やぶにらみ生物論55: mRNAへの道2:

« 軽子坂 | トップページ | トランプに戦々恐々 はてさてどうなることやら? »